Optimization of Minimum-Time Low-Thrust Transfers Using Convex Programming

In this paper, a convex optimization method for the numerical solution of the minimum-time low-thrust orbit transfer problem is presented. The main contribution is the transformation of the free-fi...

[1]  Yurii Nesterov,et al.  Smooth Convex Optimization , 2004 .

[2]  Negash G. Medhin,et al.  Nonlinear Optimal Control Theory , 2012 .

[3]  Max Cerf Low-Thrust Transfer Between Circular Orbits Using Natural Precession , 2015 .

[4]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[5]  J. Betts Very low-thrust trajectory optimization using a direct SQP method , 2000 .

[6]  Thomas Haberkorn,et al.  Low thrust minimum-fuel orbital transfer: a homotopic approach , 2004 .

[7]  Ping Lu,et al.  Closed-Loop Optimization of Guidance Gain for Constrained Impact , 2017 .

[8]  Michael J. Grant,et al.  Constrained Trajectory Optimization for Planetary Entry via Sequential Convex Programming , 2017 .

[9]  Stephen P. Boyd,et al.  Convex Optimization: Convex optimization problems , 2004 .

[10]  Ping Lu,et al.  Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimization , 2012 .

[11]  Anil V. Rao,et al.  Minimum-Time Trajectory Optimization of Low-Thrust Earth-Orbit Transfers with Eclipsing , 2016 .

[12]  Anil V. Rao,et al.  Minimum-Time Trajectory Optimization of Multiple Revolution Low-Thrust Earth-Orbit Transfers , 2015 .

[13]  P. Lu,et al.  Entry Trajectory Optimization by Second-Order Cone Programming , 2016 .

[14]  A. L. Herman,et al.  Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules , 1996 .

[15]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[16]  Behçet Açikmese,et al.  Lossless Convexification of Nonconvex Control Bound and Pointing Constraints of the Soft Landing Optimal Control Problem , 2013, IEEE Transactions on Control Systems Technology.

[17]  Ping Lu,et al.  Exact convex relaxation for optimal flight of aerodynamically controlled missiles , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[18]  I. Michael Ross Linearized Dynamic Equations for Spacecraft Subject to J Perturbations , 2003 .

[19]  Ping Lu,et al.  Robust Trajectory Optimization for Highly Constrained Rendezvous and Proximity Operations , 2013 .

[20]  Bruce A. Conway,et al.  Optimal Low-Thrust Orbital Maneuvers via Indirect Swarming Method , 2014, J. Optim. Theory Appl..

[21]  Ping Lu,et al.  Solving Nonconvex Optimal Control Problems by Convex Optimization , 2014 .

[22]  Qi Gong,et al.  Low-Thrust, High-Accuracy Trajectory Optimization , 2007, Journal of Guidance, Control, and Dynamics.

[23]  Daniel Dueri,et al.  Customized Real-Time Interior-Point Methods for Onboard Powered-Descent Guidance , 2017 .

[24]  Joel Benito,et al.  Implementation and Experimental Demonstration of Onboard Powered-Descent Guidance , 2017 .

[25]  Michael J. Grant,et al.  Hypersonic Trajectory Optimization by Sequential Semidefinite Programming , 2017 .

[26]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[27]  T. Carter State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example , 1998 .

[28]  Behcet Acikmese,et al.  Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization , 2010 .

[29]  Anastassios E. Petropoulos,et al.  Low-Thrust Transfers using Primer Vector Theory and a Second-Order Penalty Method , 2008 .

[30]  Behcet Acikmese,et al.  Convex programming approach to powered descent guidance for mars landing , 2007 .

[31]  Ryan P. Russell,et al.  Primer Vector Theory Applied to Global Low-Thrust Trade Studies , 2006 .

[32]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .