Quadrature formula for approximating the singular integral of Cauchy type with unbounded weight function on the edges
暂无分享,去创建一个
Z. K. Eshkuvatov | Nik Mohd Asri Nik Long | M. Abdulkawi | M. Abdulkawi | Z. K. Eshkuvatov | N. Long
[1] S. Amari,et al. Evaluation of Cauchy Principal-Value Integrals using modified Simpson rules , 1994 .
[2] I. K. Lifanov,et al. Proof of the numerical method of “discrete vortices” for solving singular integral equations: PMM vol. 39, n≗ 4, 1975, pp. 742–746 , 1975 .
[3] Kai Diethelm,et al. Gaussian quadrature formulae of the third kind for Cauchy principal value integrals: basic properties and error estimates , 1995 .
[4] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[5] C. Dagnino,et al. Numerical evaluation of Cauchy principal value integrals based on local spline approximation operators , 1996 .
[6] Catterina Dagnino,et al. Spline product quadrature rules for Cauchy singular integrals , 1990 .
[7] Catterina Dagnino,et al. On the convergence of spline product quadratures for Cauchy principal value integrals , 1991 .
[8] M. Golberg,et al. The numerical evaluation of a class of logarithmically singular integral transforms , 1993 .
[9] Kai Diethelm,et al. Error bounds for spline-based quadrature methods for strongly singular integrals , 1998 .
[10] I. K. Lifanov,et al. Singular Integral Equations and Discrete Vortices , 1996 .
[11] On direct numerical treatment of hypersingular integral equations arising in mechanics and acoustics , 2003, math-ph/0301034.
[12] Gennadi Vainikko,et al. Hypersingular Integral Equations and Their Applications , 2003 .