A Fully Fault-Tolerant Representation of Quantum Circuits

We present a quantum circuit representation consisting entirely of qubit initialisations (I), a network of controlled-NOT gates (C) and measurements with respect to different bases (M). The ICM representation is useful for optimisation of quantum circuits that include teleportation, which is required for fault-tolerant, error corrected quantum computation. The non-deterministic nature of teleportation necessitates the conditional introduction of corrective quantum gates and additional ancillae during circuit execution. Therefore, the standard optimisation objectives, gate count and number of wires, are not well-defined for general teleportation-based circuits. The transformation of a circuit into the ICM representation provides a canonical form for an exact fault-tolerant, error corrected circuit needed for optimisation prior to the final implementation in a realistic hardware model.

[1]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[4]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[5]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[6]  D. Aharonov A Simple Proof that Toffoli and Hadamard are Quantum Universal , 2003, quant-ph/0301040.

[7]  Masaki Nakanishi,et al.  An efficient conversion of quantum circuits to a linear nearest neighbor architecture , 2011, Quantum Inf. Comput..

[8]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[9]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[11]  S. K. Moore Computing's power limit demonstrated , 2012 .

[12]  Austin G. Fowler,et al.  Time-optimal quantum computation , 2012, 1210.4626.

[13]  Daniel Gottesman,et al.  What is the Overhead Required for Fault-Tolerant Quantum Computation? , 2013 .

[14]  Robert Wille,et al.  Towards a Design Flow for Reversible Logic , 2010 .

[15]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[16]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[17]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[18]  John P. Hayes,et al.  Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Simon J. Devitt,et al.  Software-based Pauli tracking in fault-tolerant quantum circuits , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[20]  Rolf Drechsler,et al.  Mapping NCV Circuits to Optimized Clifford+T Circuits , 2014, RC.

[21]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[22]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[23]  Simone Severini,et al.  Translation Techniques Between Quantum Circuit Architectures , 2007 .

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  W. Munro,et al.  Architectural design for a topological cluster state quantum computer , 2008, 0808.1782.

[26]  R. V. Meter,et al.  A Layered Architecture for Quantum Computing Using Quantum Dots , 2010 .

[27]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[28]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[29]  Austin G. Fowler,et al.  Quantum circuit optimization by topological compaction in the surface code , 2013, 1304.2807.

[30]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[31]  Elham Kashefi,et al.  The measurement calculus , 2004, JACM.

[32]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[33]  Kae Nemoto,et al.  Requirements for fault-tolerant factoring on an atom-optics quantum computer , 2012, Nature Communications.