Diagnostics in Nonlinear Negative Binomial Models

Abstract Nonlinear negative binomial models represent a general class of nonlinear regression models that may be applied to fit growth curves for overdispersed count data. We discuss in this article application of local influence and residual analysis through deviance residual in nonlinear negative binomial models. We derive the appropriate matrices for assessing the local influence on the parameter estimates by considering as influence measure the likelihood displacement. An example in which different growth curves for count data are compared is given for illustration.

[1]  D. Cox,et al.  A General Definition of Residuals , 1968 .

[2]  D. G. Watts,et al.  Relative Curvature Measures of Nonlinearity , 1980 .

[3]  A. C. Atkinson,et al.  Two graphical displays for outlying and influential observations in regression , 1981 .

[4]  D. Pregibon Logistic Regression Diagnostics , 1981 .

[5]  Suresh H. Moolgavkar,et al.  A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies , 1984 .

[6]  R. Cook Assessment of Local Influence , 1986 .

[7]  D. A. Williams,et al.  Generalized Linear Model Diagnostics Using the Deviance and Single Case Deletions , 1987 .

[8]  Christopher J. Nachtsheim,et al.  Diagnostics for mixed-model analysis of variance , 1987 .

[9]  P. McCullagh Tensor Methods in Statistics , 1987 .

[10]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[11]  Anthony J. Lawrance,et al.  Regression Transformation Diagnostics Using Local Influence , 1988 .

[12]  Anthony N. Pettitt,et al.  Case-Weighted Measures of Influence for Proportional Hazards Regression , 1989 .

[13]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[14]  Peter McCullagh,et al.  Some Statistical Properties of a Family of Continuous Univariate Distributions , 1989 .

[15]  Fitting Non-Exponential Family Nonlinear Models in GLIM by Using the Offset-Facility , 1989 .

[16]  A. C. Davison,et al.  Deviance residuals and normal scores plots , 1989 .

[17]  Gauss M. Cordeiro,et al.  Improved likelihood ratio statistics for exponential family nonlinear models , 1989 .

[18]  P. Grambsch,et al.  Martingale-based residuals for survival models , 1990 .

[19]  Chih-Ling Tsai,et al.  Assessing local influence in linear regression models with first-order autoregressive or heteroscedastic error structure , 1992 .

[20]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[21]  Luis A. Escobar,et al.  Assessing influence in regression analysis with censored data. , 1992, Biometrics.

[22]  J. F. Lawless,et al.  Diagnostics for a Cumulative Multinomial Generalized Linear Model, with Applications to Grouped Toxicological Mortality Data , 1992 .

[23]  Xizhi Wu,et al.  Second‐Order Approach to Local Influence , 1993 .

[24]  Gilberto A. Paula,et al.  Assessing local influence in restricted regression models , 1993 .

[25]  R. M. Loynes,et al.  Local influence: a new approach , 1993 .

[26]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .

[27]  Paula A. Gilberto Influence and residuals in restricte generalized linear models , 1995 .

[28]  Myung Genn Kim Local influence in multivariate regression , 1995 .

[29]  Philippe Lambert Modelling of non-linear growth curves on series of correlated count data measured at unequally spaced times: a full likelihood based approach , 1996 .

[30]  Dietrich von Rosen,et al.  Local influence assessment in the growth curve model with unstructured covariance , 1997 .

[31]  Heleno Bolfarine,et al.  Local influence in elliptical linear regression models , 1997 .

[32]  Lei Shi,et al.  Local influence in principal components analysis , 1997 .

[33]  Bo-Cheng Wei,et al.  Exponential Family Nonlinear Models , 1998 .

[34]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[35]  Hong Gu,et al.  Assessing Local Influence in Canonical Correlation Analysis , 1998 .

[36]  Wing K. Fung,et al.  Assessing local influence for specific restricted likelihood: Application to factor analysis , 1998 .

[37]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[38]  Ananda Sen,et al.  The Theory of Dispersion Models , 1997, Technometrics.

[39]  Shuangzhe Liu,et al.  On local influence for elliptical linear models , 2000 .

[40]  M. A. G. Sierra,et al.  REGRESSION DIAGNOSTIC USING LOCAL INFLUENCE: A REVIEW , 2001 .

[41]  B. Wei,et al.  LOCAL INFLUENCE IN NONLINEAR REPRODUCTIVE DISPERSION MODELS , 2001 .

[42]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[43]  Gilberto A. Paula,et al.  Theory & Methods: Deviance Residuals for an Angular Response , 2002 .