Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations

[1]  Mark J. Gotay,et al.  Presymplectic lagrangian systems. I : the constraint algorithm and the equivalence theorem , 1979 .

[2]  Gerard Thompson,et al.  Inverse problem of the calculus of variations on Lie groups , 2005 .

[3]  Marc Henneaux,et al.  On the inverse problem of the calculus of variations , 1982 .

[4]  Frans Cantrijn,et al.  Higher-order differential equations and higher-order lagrangian mechanics , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[6]  The inverse problem for six-dimensional codimension two nilradical lie algebras , 2006 .

[7]  O. Krupkova A geometric setting for higher‐order Dirac–Bergmann theory of constraints , 1994 .

[8]  Frans Cantrijn,et al.  GENERALIZATIONS OF NOETHER'S THEOREM IN CLASSICAL MECHANICS* , 1981 .

[9]  W. Sarlet,et al.  The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics , 1982 .

[10]  Olga Krupková,et al.  Mechanical systems with nonholonomic constraints , 1997 .

[11]  T. Mestdag Berwald-type connections in time-dependent mechanics and dynamics on affine Lie algebroids , 2003 .

[12]  M. Crampin On the differential geometry of the Euler-Lagrange equations, and the inverse problem of Lagrangian dynamics , 1981 .

[13]  G. Marmo,et al.  The inverse problem in the calculus of variations and the geometry of the tangent bundle , 1990 .

[14]  M. Crampin Tangent bundle geometry Lagrangian dynamics , 1983 .

[15]  Tom Duchamp,et al.  On the Existence of Global Variational Principles , 1980 .

[16]  Eduardo Martínez,et al.  Linear connections for systems of second-order ordinary differential equations , 1996 .

[17]  Variational connections on Lie groups , 2003 .

[18]  Geometric aspects of reduction of order , 1992 .

[19]  M. Crampin,et al.  Projective differential geometry and geodesic conservation laws in general relativity. I: Projective actions , 1984 .

[20]  A general Raychaudhuri's equation for second-order differential equations , 2000 .

[21]  W. Hamilton,et al.  HAMILTONIAN FIELD THEORY REVISITED: A GEOMETRIC APPROACH TO REGULARITY , 2001 .

[22]  O. Krupkova Symmetries and first integrals of time-dependent higher-order constrained systems☆ , 1996 .

[23]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[24]  On the existence of local and global Lagrangians for ordinary differential equations , 1990 .

[25]  G. Prince Toward a classification of dynamical symmetries in classical mechanics , 1983, Bulletin of the Australian Mathematical Society.

[26]  Derivations of differential forms along the tangent bundle projection , 1992 .

[27]  A geometric theory of ordinary first order variational problems in fibered manifolds , 1975 .

[28]  A linear connection for higher-order ordinary differential equations , 1996 .

[29]  Joseph Grifone,et al.  Structure presque tangente et connexions I , 1972 .

[30]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[31]  J. Grifone,et al.  Sur le problème inverse du calcul des variations : existence de lagrangiens associés à un spray dans le cas isotrope , 1999 .

[32]  I. Anderson Aspects of the Inverse Problem to the Calculus of Variations , 1988 .

[33]  A complete set of Bianchi identities for tensor fields along the tangent bundle projection , 1994 .

[34]  A universal Hamilton-Jacobi equation for second-order ODEs , 1999 .

[35]  Towards a geometrical understanding of Douglas's solution of the inverse problem of the calculus of variations , 1994 .

[36]  Variational first-order partial differential equations☆ , 2003 .

[37]  M. Crampin,et al.  The Integrability Conditions in the Inverse Problem of the Calculus of Variations for Second-Order Ordinary Differential Equations , 1998 .

[38]  J. M. Nester,et al.  Presymplectic lagrangian systems. II : the second-order equation problem , 1980 .

[39]  S. Sternberg,et al.  The Hamilton-Cartan formalism in the calculus of variations , 1973 .

[40]  M. León,et al.  The constraint algorithm in the jet formalism , 1996 .

[41]  The Berwald-type connection associated to time-dependent second-order differential equations , 2001 .

[43]  Jürgen Jost,et al.  Geometry and Physics , 2009 .

[44]  Jesse Douglas Solution of the inverse problem of the calculus of variations , 1941 .

[45]  W. Sarlet,et al.  Derivations of forms along a map: the framework for time-dependent second-order equations , 1995 .

[46]  The geometry of variational equations , 2004 .

[47]  W. Sarlet,et al.  General solution and invariants for a class of lagrangian equations governed by a velocity-dependent potential energy , 1973 .

[48]  A. Trautman Noether equations and conservation laws , 1967 .

[49]  A geometrical version of the Helmholtz conditions in time- dependent Lagrangian dynamics , 1984 .

[50]  M. Jerie,et al.  Jacobi fields and linear connections for arbitrary second-order ODEs , 2002 .

[51]  M. Henneaux,et al.  Lagrangians for spherically symmetric potentials , 1982 .

[52]  D. R. Davis The inverse problem of the calculus of variations in higher space , 1928 .

[53]  A generalization of the Liouville-Arnol'd theorem , 1995 .

[54]  Higher-order constrained systems on fibered manifolds: An exterior differential systems approach , 1996 .

[55]  Mark J. Gotay,et al.  Presymplectic manifolds and the Dirac-Bergmann theory of constraints , 1978 .

[56]  Willy Sarlet,et al.  Adjoint symmetries for time-dependent second-order equations , 1990 .

[57]  W. Sarlet,et al.  Geometric characterization of separable second-order differential equations , 1993, Mathematical Proceedings of the Cambridge Philosophical Society.

[58]  H. von Helmholtz,et al.  Ueber die physikalische Bedeutung des Prinicips der kleinsten Wirkung. , 1887 .

[59]  Some geometric aspects of variational problems in fibred manifolds , 2001, math-ph/0110005.

[60]  G. Prince,et al.  Computer algebra solution of the inverse problem in the calculus of variations , 1998 .

[61]  M. Modugno Torsion and Ricci tensor for non-linear connections , 1991 .

[62]  The Inverse Problem of the Calculus of Variations: Separable Systems , 1999 .

[63]  Symmetries and constants of the motion for higher‐order Lagrangian systems , 1995 .

[64]  I. Anderson,et al.  The Inverse Problem in the Calculus of Variations for Ordinary Differen-tial Equations , 1992 .

[65]  G. Prince A complete classification of dynamical symmetries in classical mechanics , 1985, Bulletin of the Australian Mathematical Society.

[66]  The separation of the Hamilton-Jacobi equation for the Kerr metric , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[67]  Arthur Hirsch Die Existenzbedingungen des verallgemeinerten kinetischen Potentials , 1898 .

[68]  An EDS approach to the inverse problem in the calculus of variations , 2006 .

[69]  D. D. Diego,et al.  Classification of symmetries for higher order Lagrangian systems II: The non-autonomous case. , 1994 .

[70]  Gerard Thompson,et al.  The inverse problem of the calculus of variations: The use of geometrical calculus in Douglas's analysis. , 2002 .

[71]  Espaces variationnels et mécanique , 1962 .

[72]  A. K. Head,et al.  Dimsym and LIE: Symmetry determination packages , 1997 .

[73]  Manuel de León,et al.  Methods of differential geometry in analytical mechanics , 1989 .

[74]  Variational sequences in mechanics , 1997 .

[75]  D. Krupka A geometric theory of ordinary first order variational problems in fibered manifolds. II. Invariance , 1975 .

[76]  P. Dedecker,et al.  Spectral sequences and the inverse problem of the calculus of variations , 1980 .

[77]  F. Takens A global version of the inverse problem of the calculus of variations , 1979 .

[78]  Global Variational Principles: Foundations and Current Problems , 2004 .