Parameter discovery in stochastic biological models using simulated annealing and statistical model checking

Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.

[1]  Håkan L. S. Younes,et al.  Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling , 2002, CAV.

[2]  Vasant Honavar,et al.  Abstraction Augmented Markov Models , 2010, 2010 IEEE International Conference on Data Mining.

[3]  Manuel A Patarroyo,et al.  Molecular modeling and in silico characterization of Mycobacterium tuberculosis TlyA: Possible misannotation of this tubercle bacilli-hemolysin , 2011, BMC Structural Biology.

[4]  Kenichi Higo,et al.  PLACE: a database of plant cis-acting regulatory DNA elements , 1998, Nucleic Acids Res..

[5]  Anantharaman Kalyanaraman,et al.  MapReduce implementation of a hybrid spectral library-database search method for large-scale peptide identification , 2011, Bioinform..

[6]  Bernd Finkbeiner,et al.  Checking Finite Traces using Alternating Automata , 2001, Electron. Notes Theor. Comput. Sci..

[7]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[8]  Sumit Kumar Jha d-IRA: A Distributed Reachability Algorithm for Analysis of Linear Hybrid Automata , 2008, HSCC.

[9]  Vladimir Filkov,et al.  Exploring biological network structure using exponential random graph models , 2007, Bioinform..

[10]  Kevin Burrage,et al.  Stochastic approaches for modelling in vivo reactions , 2004, Comput. Biol. Chem..

[11]  Julio O. Ortiz,et al.  Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study , 2011, PLoS Comput. Biol..

[12]  B. K. Ghosh,et al.  Handbook of sequential analysis , 1991 .

[13]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: Stochastic simulation algorithms , 2009 .

[14]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[15]  Sumit Kumar Jha,et al.  Reachability for Linear Hybrid Automata Using Iterative Relaxation Abstraction , 2007, HSCC.

[16]  Claudio Cobelli,et al.  Meal Simulation Model of the Glucose-Insulin System , 2007, IEEE Transactions on Biomedical Engineering.

[17]  Ying Xu,et al.  In-silico prediction of blood-secretory human proteins using a ranking algorithm , 2010, BMC Bioinformatics.

[18]  Léon Bottou,et al.  Stochastic Learning , 2003, Advanced Lectures on Machine Learning.

[19]  W. Ames Mathematics in Science and Engineering , 1999 .

[20]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[21]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[22]  Susmit Jha,et al.  Synthesis of insulin pump controllers from safety specifications using Bayesian model validation , 2012, Int. J. Bioinform. Res. Appl..

[23]  Sumit Kumar Jha,et al.  When to stop verification?: Statistical trade-off between expected loss and simulation cost , 2011, 2011 Design, Automation & Test in Europe.

[24]  J Timmer,et al.  Parameter estimation in stochastic biochemical reactions. , 2006, Systems biology.

[25]  Étienne André,et al.  The Inverse Method: Parametric Verification of Real-time Unbedded Systems , 2013 .

[26]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[27]  Leslie Lamport,et al.  An Assertional Correctness Proof of a Distributed Algorithm , 1982, Sci. Comput. Program..

[28]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[29]  Anupam Bhattacharjee,et al.  A stochastic approach to candidate disease gene subnetwork extraction , 2010, SAC '10.

[30]  Prospero C. Naval,et al.  Parameter estimation using Simulated Annealing for S-system models of biochemical networks , 2007, Bioinform..

[31]  R. Eils,et al.  Gene network dynamics controlling keratinocyte migration , 2008, Molecular systems biology.

[32]  Hao Wang,et al.  A Parallel Algorithm for Learning Bayesian Networks , 2007, PAKDD.

[33]  Chris de Graaf,et al.  Cytochrome P450 in Silico: An Integrative Modeling Approach , 2005 .

[34]  Håkan L. S. Younes,et al.  Statistical probabilistic model checking with a focus on time-bounded properties , 2006, Inf. Comput..

[35]  J. Ben Atkinson,et al.  Modeling and Analysis of Stochastic Systems , 1996 .

[36]  Darren J. Wilkinson,et al.  Parameter inference for stochastic kinetic models of bacterial gene regulation: A Bayesian Approach to Systems Biology , 2011 .

[37]  Sumit Kumar Jha,et al.  A Counterexample-Guided Approach to Parameter Synthesis for Linear Hybrid Automata , 2008, HSCC.

[38]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[39]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[40]  Sumit Kumar Jha,et al.  Exploring behaviors of SDE models of biological systems using change of measures , 2011, 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS).

[41]  Yiannis Kaznessis,et al.  Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. , 2005, The Journal of chemical physics.

[42]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[43]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[44]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[45]  C. Cobelli,et al.  In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes , 2009, Journal of diabetes science and technology.

[46]  Chris de Graaf,et al.  Cytochrome p450 in silico: an integrative modeling approach. , 2005, Journal of medicinal chemistry.