On weight multiplicities of complex simple Lie algebras

The author introduces the notion of a chopped and sliced cone and shows that the weight multiplicities of semisimple complex Lie algebras are governed by this notion. From this he derives a presentation of the weight multiplicity function as a composition of a vector partition function and a linear map. By virtue of this presentation he obtains structural and asymptotic properties of weight multiplicities; for example a proof of G. Heckman's theorem on the Duistermaat-Heckman measure is obtained in this way. The author describes an algorithm for computing general vector partition functions and gives an implementation as a Maple prototype. Using this program he determines and states the weight multiplicity function of the Lie algebra so5(C) completely.

[1]  A. Kleshchev Linear and Projective Representations of Symmetric Groups , 2005 .

[2]  Peter Littelmann,et al.  A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras , 1994 .

[3]  Bernd Sturmfels,et al.  On Vector Partition Functions , 1995, J. Comb. Theory, Ser. A.

[4]  Peter Littelmann,et al.  Paths and root operators in representation theory , 1995 .

[5]  Michele Vergne,et al.  Residue formulae for vector partitions and Euler-MacLaurin sums , 2003, Adv. Appl. Math..

[6]  J. Duistermaat,et al.  On the variation in the cohomology of the symplectic form of the reduced phase space , 1982 .

[7]  H. Weyl Nachtrag zu der Arbeit: Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. III , 1926 .

[8]  Israel M. Gelfand,et al.  Finite-dimensional representations of the group of unimodular matrices , 1950 .

[9]  Gert Heckman,et al.  Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups , 1982 .

[10]  G. R. Blakley Combinatorial remarks on partitions of a multipartite number , 1964 .

[11]  Corrado De Concini,et al.  Nested sets and Jeffrey-Kirwan residues , 2005 .

[12]  Peter Littelmann,et al.  Cones, crystals, and patterns , 1998 .

[13]  L. C. Jeffrey,et al.  Localization for nonabelian group actions , 1993 .

[14]  Masaki Kashiwara,et al.  Crystalizing theq-analogue of universal enveloping algebras , 1990 .

[15]  Michele Vergne,et al.  Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue , 1999 .

[16]  Charles Cochet,et al.  Volume Computation for Polytopes and Partition Functions for Classical Root Systems , 2006, Discret. Comput. Geom..