Abstract An individual-based model that simulates fish selection processes in diamond mesh cod-ends of towed fishing gears is outlined. The model is implemented in a computer program called PRESEMO. A typical simulation can be carried out within a few minutes on a personal computer. Up to four different populations of fish entering the cod-end during a tow can be accounted for. Each fish is assigned a weight, girth, width and height according to its length, and is assumed to have an elliptical cross-section. Fish are allocated a period of travel time down the cod-end, a period for swimming in the cod-end without being exhausted, a period between escape attempts and a packing density for those swimming ahead of the catch. An escape attempt is deemed successful if a fish can pass through the mesh opening at the position in the cod-end where the escape attempt takes place. The mesh opening value is obtained from information on the shape of the cod-end, which depends on the catch weight. The cod-end shape is updated dynamically as the catch builds up during the tow. During a simulation the selection process is continually visualized, that is, the entry, movement and escape attempts of individual fish are shown as well as the changes in the cod-end geometry. At the end of a simulation, a logistic function is automatically fitted to the selection data to obtain estimates of the 50% retention length and the selection range.
[1]
Bent Herrmann,et al.
Effect of catch size and shape on the selectivity of diamond mesh cod-ends: II. Theoretical study of haddock selection
,
2005
.
[2]
D. Wileman,et al.
Manual of methods of measuring the selectivity of towed fishing gears
,
1996
.
[3]
C. S. Wardle.
Fish Behaviour and Fishing Gear
,
1986
.
[4]
Finbarr G. O’Neill,et al.
Differential Equations Governing the Geometry of a Diamond Mesh Cod-end of a Trawl Net
,
1997
.
[5]
Finbarr G. O’Neill,et al.
Axisymmetric trawl cod-ends made from netting of a generalized mesh shape
,
1999
.
[6]
J. Caddy.
Fisheries management in the twenty-first century: will new paradigms apply?
,
1999,
Reviews in Fish Biology and Fisheries.
[7]
F. O’Neill,et al.
An investigation of the relationship between sea state induced vessel motion and cod-end selection
,
2003
.