Particle filters and Bayesian inference in financial econometrics
暂无分享,去创建一个
[1] S. J. Koopman. Discussion of `Particle Markov chain Monte Carlo methods – C. Andrieu, A. Doucet and R. Holenstein’ [Review of: Particle Markov chain Monte Carlo methods] , 2010 .
[2] Alan E. Gelfand,et al. Bayesian statistics without tears: A sampling-resampling perspective , 1992 .
[3] D. Gamerman,et al. Comparison of Sampling Schemes for Dynamic Linear Models , 2006 .
[4] Arnaud Doucet,et al. Particle methods for optimal filter derivative: application to parameter estimation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[5] N. Shephard,et al. Stochastic volatility with leverage: Fast and efficient likelihood inference , 2007 .
[6] Drew D. Creal. Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models , 2008, Comput. Stat. Data Anal..
[7] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[8] Christophe Andrieu,et al. Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.
[9] Carlos M. Carvalho,et al. Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..
[10] Simon J. Godsill,et al. An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.
[11] Mike K. P. So,et al. A Stochastic Volatility Model With Markov Switching , 1998 .
[12] N. Shephard,et al. Analysis of high dimensional multivariate stochastic volatility models , 2006 .
[13] Michael A. West,et al. Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..
[14] N. Shephard. Partial non-Gaussian state space , 1994 .
[15] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[16] O. Cappé,et al. Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models , 2006, math/0609514.
[17] Dani Gamerman,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .
[18] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[19] Bradley P. Carlin,et al. Markov Chain Monte Carlo Methods for Computing Bayes Factors , 2001 .
[20] Nicholas G. Polson,et al. The Impact of Jumps in Volatility and Returns , 2000 .
[21] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[22] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[23] Nicholas G. Polson,et al. Tracking Flu Epidemics Using Google Flu Trends and Particle Learning , 2009 .
[24] Francesca Petralia,et al. Sequential Monte Carlo Estimation of DSGE Models , 2010 .
[25] Nicholas G. Polson,et al. Particle Learning and Smoothing , 2010, 1011.1098.
[26] L. Wasserman,et al. Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .
[27] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[28] Nicholas G. Polson,et al. Practical filtering with sequential parameter learning , 2008 .
[29] Nicholas G. Polson,et al. Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices , 2009 .
[30] Arnaud Doucet,et al. Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo , 2011 .
[31] A. Doucet,et al. A note on auxiliary particle filters , 2008 .
[32] A. Doucet,et al. Smoothing algorithms for state–space models , 2010 .
[33] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[34] Cindy L. Yu,et al. A Bayesian Analysis of Return Dynamics with Lévy Jumps , 2008 .
[35] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[36] Christophe Andrieu,et al. Efficient particle filtering for jump Markov systems. Application to time-varying autoregressions , 2003, IEEE Trans. Signal Process..
[37] P. Fearnhead,et al. Particle filters for partially observed diffusions , 2007, 0710.4245.
[38] Junye Li. Sequential Bayesian Analysis of Time-Changed Infinite Activity Derivatives Pricing Models , 2009 .
[39] P. Fearnhead,et al. Improved particle filter for nonlinear problems , 1999 .
[40] Andrew Harvey,et al. Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .
[41] A. Doucet,et al. Particle filtering for partially observed Gaussian state space models , 2002 .
[42] P. Fearnhead,et al. On‐line inference for hidden Markov models via particle filters , 2003 .
[43] P. Fearnhead,et al. Exact filtering for partially observed continuous time models , 2004 .
[44] P. Fearnhead. Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .
[45] Michael A. West,et al. BAYESIAN MODEL ASSESSMENT IN FACTOR ANALYSIS , 2004 .
[46] S. Frühwirth-Schnatter. Data Augmentation and Dynamic Linear Models , 1994 .
[47] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[48] Jun S. Liu,et al. Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .
[49] Nicholas G. Polson,et al. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .
[50] R. Douc,et al. Optimality of the auxiliary particle filter , 2009 .
[51] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[52] Jesús Fernández-Villaverde,et al. Estimating Dynamic Equilibrium Economies: Linear Versus Nonlinear Likelihood , 2004 .
[53] Nicholas G. Polson,et al. Particle learning for general mixtures , 2010 .
[54] N. Shephard,et al. Markov chain Monte Carlo methods for stochastic volatility models , 2002 .
[55] M. West,et al. Dynamic Generalized Linear Models and Bayesian Forecasting , 1985 .
[56] Silvano Bordignon,et al. Sequential Monte Carlo Methods for Stochastic Volatility Models with Jumps , 2006 .
[57] N. Shephard,et al. Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .
[58] Ruey S. Tsay,et al. Analysis of Financial Time Series: Tsay/Analysis of Financial Time Series , 2005 .
[59] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[60] Nicholas G. Polson,et al. Sequential Parameter Estimation in Stochastic Volatility Models with Jumps , 2006 .
[61] Robert B. Gramacy,et al. Particle Learning of Gaussian Process Models for Sequential Design and Optimization , 2009, 0909.5262.
[62] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[63] N. Chopin. A sequential particle filter method for static models , 2002 .
[64] Giovanni Petris,et al. Dynamic Linear Models with R , 2009 .
[65] Jun S. Liu,et al. Blind Deconvolution via Sequential Imputations , 1995 .
[66] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[67] M. West. Approximating posterior distributions by mixtures , 1993 .
[68] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[69] Rong Chen,et al. New sequential Monte Carlo methods for nonlinear dynamic systems , 2005, Stat. Comput..
[70] Carlos M. Carvalho,et al. Particle Learning for Sequential Bayesian Computation , 2012 .
[71] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[72] Yuguo Chen,et al. Identification and Adaptive Control of Change-Point ARX Models Via Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Automatic Control.
[73] David N. DeJong,et al. Effi cient Likelihood Evaluation of State-Space Representations , 2011 .
[74] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[75] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[76] Jun S. Liu,et al. Mixture Kalman filters , 2000 .
[77] Aurélien Garivier,et al. ON THE FORWARD FILTERING BACKWARD SMOOTHING PARTICLE APPROXIMATIONS OF THE SMOOTHING DISTRIBUTION IN GENERAL STATE SPACES MODELS , 2009, 0904.0316.
[78] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[79] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[80] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[81] M. West,et al. Modelling Agent Forecast Distributions , 1992 .
[82] Arnaud Doucet,et al. Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..
[83] Giovanni Petris,et al. Dynamic linear models , 2009 .
[84] Jean-Francois Richard,et al. Efficient Filtering in State-Space Representations , 2008 .
[85] Siddhartha Chib,et al. Stochastic Volatility with Leverage: Fast Likelihood Inference , 2004 .
[86] Paul Fearnhead,et al. Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..
[87] D. Dunson,et al. Bayesian Variable Selection via Particle Stochastic Search. , 2011, Statistics & probability letters.
[88] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[89] P. Fearnhead,et al. A sequential smoothing algorithm with linear computational cost. , 2010 .
[90] Robert B. Gramacy,et al. Dynamic Trees for Learning and Design , 2009, 0912.1586.
[91] Nicholas G. Polson,et al. Sequential Learning, Predictability, and Optimal Portfolio Returns , 2013 .
[92] Peter E. Rossi,et al. Bayesian Analysis of Stochastic Volatility Models , 1994 .
[93] A. Doucet,et al. On-Line Parameter Estimation in General State-Space Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.