Robot modularity for self-reconfiguration

Metamorphic robots are an emerging field in which robotics can dynamically reconfigure shape and size not only for individual roots but also for complex structures that are formed by multiple robots. Such capability is highly in tasks such as fire fighting, earthquake rescue, and battlefield scouting, where robots must go through unexpected situations and obstacles and perform tasks that are difficult for fixed-shape robots. This research direction present a number of technical research challenges. Specifically, metamorphic robots must be able to decompose and reassemble at will from a set of basic connectable modules. Such modules must be small, self-sufficient and relatively homogeneous. In this paper, we present our approach to address these issue and describe the design of the CONRO modules. These modules are equipped with a low power micro-processor, memory chips, sensors, actuators, power supplies, and miniature mechanical connectors used for communication and power sharing. We will also describe a set of control mechanisms for controlling gaits and reconfigurations. We conclude the paper with a status report of the CONRO project and a list of the future work needed to fully realize the construction of the CONRO metamorphic robots.

[1]  Martin Nilsson Why snake robots need torsion-free joints and how to design them , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[2]  Arthur C. Sanderson,et al.  Tetrobot family tree: modular synthesis of kinematic structures for parallel robotics , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[3]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[5]  Joel W. Burdick,et al.  Determining task optimal modular robot assembly configurations , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[6]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[7]  R.S. Wallace,et al.  Scaling direct drive robots , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[8]  Benedetto Allotta,et al.  Traveling wave locomotion hyper-redundant mobile robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  Christiaan J. J. Paredis,et al.  Design of modular fault tolerant manipulators , 1995 .

[10]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[11]  Marsette Vona,et al.  The Self-reconnguring Robotic Molecule , 1998 .

[12]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[13]  Mark H. Yim,et al.  Locomotion With A Unit-Modular Reconfigurable Robot , 1995 .

[14]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[15]  Gregory S. Chirikjian,et al.  Design And Implementation Of Metamorphic Robots , 1996 .