The CrIMSS EDR Algorithm: Characterization, Optimization, and Validation

The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) instruments aboard the Suomi National Polar-orbiting Partnership satellite provide high-quality hyperspectral infrared and microwave observations to retrieve atmospheric vertical temperature and moisture profiles (AVTP and AVMP) and many other environmental data records (EDRs). The official CrIS and ATMS EDR algorithm, together called the Cross-track Infrared and Microwave Sounding Suite (CrIMSS), produces EDR products on an operational basis through the interface data processing segment. The CrIMSS algorithm group is to assess and ensure that operational EDRs meet beta and provisional maturity requirements and are ready for stages 1–3 validations. This paper presents a summary of algorithm optimization efforts, as well as characterization and validation of the AVTP and AVMP products using the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis, the Atmospheric Infrared Sounder (AIRS) retrievals, and conventional and dedicated radiosonde observations. The global root-mean-square (RMS) differences between the CrIMSS products and the ECMWF show that the AVTP is meeting the requirements for layers 30–300 hPa (1.53 K versus 1.5 K) and 300–700 hPa (1.28 K versus 1.5 K). Slightly higher RMS difference for the 700 hPa-surface layer (1.78 K versus 1.6 K) is attributable to land and polar profiles. The AVMP product is within the requirements for 300–600 hPa (26.8% versus 35%) and is close in meeting the requirements for 600 hPa-surface (25.3% versus 20%). After just one year of maturity, the CrIMSS EDR products are quite comparable to the AIRS heritage algorithm products and show readiness for stages 1–3 validations.

[1]  Christopher D. Barnet,et al.  Alternative cloud clearing methodologies for the atmospheric infrared sounder (AIRS) , 2005, SPIE Optics + Photonics.

[2]  Ralph Ferraro,et al.  Evaluation and improvement of AMSU precipitation retrievals , 2007 .

[3]  Lihang Zhou,et al.  AIRS near-real-time products and algorithms in support of operational numerical weather prediction , 2003, IEEE Trans. Geosci. Remote. Sens..

[4]  Christopher D. Barnet,et al.  Multiyear Observations of the Tropical Atlantic Atmosphere: Multidisciplinary Applications of the NOAA Aerosols and Ocean Science Expeditions , 2011 .

[5]  Michael E. Schaepman,et al.  Algorithm theoretical basis document , 2009 .

[6]  Jean-Luc Moncet,et al.  Infrared Radiance Modeling by Optimal Spectral Sampling , 2008 .

[7]  Christopher D. Barnet,et al.  Evaluation of Atmospheric Infrared Sounder ozone profiles and total ozone retrievals with matched ozonesonde measurements, ECMWF ozone data, and Ozone Monitoring Instrument retrievals , 2008 .

[8]  Eric S. Maddy,et al.  Vertical Resolution Estimates in Version 5 of AIRS Operational Retrievals , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[9]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  Guang Guo,et al.  Porting and testing NPOESS CrIMSS EDR algorithms , 2010, Asia-Pacific Remote Sensing.

[11]  S. Fueglistaler,et al.  Statistical analysis of global variations of atmospheric relative humidity as observed by AIRS , 2012 .

[12]  Eva Borbas,et al.  Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements , 2008 .

[13]  Wanchun Chen,et al.  Assessment of a Variational Inversion System for Rainfall Rate Over Land and Water Surfaces , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Christopher D. Barnet,et al.  UsingMetOp-AAVHRR Clear-Sky Measurements to Cloud-ClearMetOp-AIASI Column Radiances , 2011 .

[15]  Ying-Hwa Kuo,et al.  Quantification of structural uncertainty in climate data records from GPS radio occultation , 2012 .

[16]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[17]  Christopher D. Barnet,et al.  Hyperspectral Earth Observation from IASI: Five Years of Accomplishments , 2012 .

[18]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[19]  Fuzhong Weng,et al.  Precipitation characteristics over land from the NOAA‐15 AMSU sensor , 2000 .

[20]  Xu Liu,et al.  Retrieving atmospheric temperature and moisture profiles from SUOMI NPP CrIS/ATMS sensors using CrIMSS EDR algorithm , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Bomin Sun,et al.  The NOAA Products Validation System (NPROVS) , 2012 .

[22]  L. Larrabee Strow,et al.  Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation , 2006 .

[23]  Christopher D. Barnet,et al.  Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts , 2006 .

[24]  Christopher D. Barnet,et al.  Pre-Launch Evaluation of NPP-CrIMSS EDR Algorithm Products with Matched ECMWF Analysis, RAOB Measurements, and IASI Retrievals , 2011 .

[25]  Fuzhong Weng,et al.  NOAA operational hydrological products derived from the advanced microwave sounding unit , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[26]  William L. Smith,et al.  AIRS/AMSU/HSB validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  Xu Liu,et al.  Porting and testing NPOESS CrIMSS EDR algorithms , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[28]  Steven D. Miller,et al.  NPOESS: Next-Generation Operational Global Earth Observations , 2010 .

[29]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Xu Liu,et al.  Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Christopher D. Barnet,et al.  On the effect of dust aerosols on AIRS and IASI operational level 2 products , 2012 .

[32]  Xu Liu,et al.  Efficient nonlinear inversion for atmospheric sounding and other applications. , 2009, Applied optics.

[33]  Gail E. Bingham,et al.  Noise performance of the CrIS instrument , 2013 .

[34]  Christopher D. Barnet,et al.  Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data Under Cloudy Conditions , 2002 .

[35]  Joel Susskind,et al.  Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Wanchun Chen,et al.  MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Eric J. Fetzer,et al.  Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology , 2013 .

[38]  Antonia Gambacorta,et al.  Validation of satellite sounder environmental data records: Application to the Cross‐track Infrared Microwave Sounder Suite , 2013 .

[39]  R. Anthes,et al.  Exploring earth's atmosphere with radio occultation: contributions to weather, climate and space weather , 2011 .

[40]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .