Computational planning of the synthesis of complex natural products

[1]  A. Zografos Efficiency in Natural Product Total Synthesis. Edited by Pei‐Qiang Huang, Zhu‐Jun Yao, Richard P. Hsung. , 2021, Angewandte Chemie.

[2]  T. Cernak,et al.  Reinforcing the Supply Chain of COVID-19 Therapeutics with Expert-Coded Retrosynthetic Software , 2020 .

[3]  H. Zhai,et al.  Total Syntheses of (-)-Conidiogenone B, (-)-Conidiogenone and (-)-Conidiogenol. , 2020, Angewandte Chemie.

[4]  P. Baran,et al.  Two-Phase Synthesis of Taxol®. , 2020, Journal of the American Chemical Society.

[5]  B. Stoltz,et al.  The Total Synthesis of (-)-Scabrolide A. , 2020, Journal of the American Chemical Society.

[6]  Riccardo Petraglia,et al.  Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy† , 2020, Chemical science.

[7]  Piotr Dittwald,et al.  Algorithmic Discovery of Tactical Combinations for Advanced Organic Syntheses , 2020, Chem.

[8]  Bartosz A Grzybowski,et al.  Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning. , 2019, Angewandte Chemie.

[9]  B. Grzybowski,et al.  Rapid and Accurate Prediction of pKa Values of C-H Acids Using Graph Convolutional Neural Networks. , 2019, Journal of the American Chemical Society.

[10]  Alpha A Lee,et al.  Molecular Transformer unifies reaction prediction and retrosynthesis across pharma chemical space. , 2019, Chemical communications.

[11]  Sara Szymkuć,et al.  The logic of translating chemical knowledge into machine-processable forms: a modern playground for physical-organic chemistry , 2019, Reaction Chemistry & Engineering.

[12]  Piotr Dittwald,et al.  Computational design of syntheses leading to compound libraries or isotopically labelled targets , 2019, Chemical science.

[13]  Pieter P. Plehiers,et al.  A robotic platform for flow synthesis of organic compounds informed by AI planning , 2019, Science.

[14]  R. Sarpong,et al.  Total Synthesis of the Diterpenoid Alkaloid Arcutinidine Using a Strategy Inspired by Chemical Network Analysis. , 2019, Journal of the American Chemical Society.

[15]  Bartosz A. Grzybowski,et al.  Selection of cost-effective yet chemically diverse pathways from the networks of computer-generated retrosynthetic plans† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc05611k , 2019, Chemical science.

[16]  Piotr Dittwald,et al.  Navigating around Patented Routes by Preserving Specific Motifs along Computer-Planned Retrosynthetic Pathways , 2019, Chem.

[17]  Bartosz A Grzybowski,et al.  Prediction of Major Regio-, Site-, and Diastereoisomers in Diels-Alder Reactions by Using Machine-Learning: The Importance of Physically Meaningful Descriptors. , 2018, Angewandte Chemie.

[18]  B. Plietker,et al.  Catalytic Enantioselective Total Synthesis of the Picrotoxane Alkaloids (-)-Dendrobine, (-)-Mubironine B, and (-)-Dendroxine. , 2018, Organic letters.

[19]  Yu‐Ming Zhao,et al.  Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-Stage sp3 C-H Bond Oxidation. , 2018, Journal of the American Chemical Society.

[20]  Mike Preuss,et al.  Planning chemical syntheses with deep neural networks and symbolic AI , 2017, Nature.

[21]  Piotr Dittwald,et al.  Efficient Syntheses of Diverse, Medicinally Relevant Targets Planned by Computer and Executed in the Laboratory , 2018 .

[22]  S. Tsukamoto,et al.  Lamellodysidines A and B, Sesquiterpenes Isolated from the Marine Sponge Lamellodysidea herbacea. , 2017, Journal of natural products.

[23]  E. P. Gajewska,et al.  Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient? , 2017, Scientific Reports.

[24]  Geoffrey I. Webb,et al.  Encyclopedia of Machine Learning and Data Mining , 2017, Encyclopedia of Machine Learning and Data Mining.

[25]  Kangway V. Chuang,et al.  A 15-step synthesis of (+)-ryanodol , 2016, Science.

[26]  Piotr Dittwald,et al.  Computer-Assisted Synthetic Planning: The End of the Beginning. , 2016, Angewandte Chemie.

[27]  Jordi Vallverdú,et al.  Can machines talk? Comparison of Eliza with modern dialogue systems , 2016, Comput. Hum. Behav..

[28]  B. Grzybowski,et al.  A Priori Estimation of Organic Reaction Yields. , 2015, Angewandte Chemie.

[29]  S. Buchwald,et al.  Enantioselective Synthesis of Carbo- and Heterocycles through a CuH-Catalyzed Hydroalkylation Approach , 2015, Journal of the American Chemical Society.

[30]  K. Nicolaou,et al.  Total Synthesis and Structural Revision of Antibiotic CJ-16,264. , 2015, Angewandte Chemie.

[31]  T. Bradshaw,et al.  Ibogan, tacaman, and cytotoxic bisindole alkaloids from tabernaemontana. Cononusine, an iboga alkaloid with unusual incorporation of a pyrrolidone moiety. , 2015, Journal of natural products.

[32]  Zhi‐Xiang Yu,et al.  DFT study of the mechanism and stereochemistry of the Rh(I)-catalyzed Diels-Alder reactions between electronically neutral dienes and dienophiles. , 2014, The Journal of organic chemistry.

[33]  Zhen Yang,et al.  Total synthesis of aplykurodinone-1. , 2014, Organic letters.

[34]  P. Baran,et al.  Two-Phase Synthesis of (−)-Taxuyunnanine D , 2014, Journal of the American Chemical Society.

[35]  Michael A. Corsello,et al.  Concise Enantiospecific Total Synthesis of Tubingensin A , 2014, Journal of the American Chemical Society.

[36]  Orr Ravitz,et al.  Data-driven computer aided synthesis design. , 2013, Drug discovery today. Technologies.

[37]  B. Grzybowski,et al.  Parallel optimization of synthetic pathways within the network of organic chemistry. , 2012, Angewandte Chemie.

[38]  P. Baran,et al.  Scalable, enantioselective taxane total synthesis , 2011, Nature chemistry.

[39]  Mingyao Liu,et al.  Dauricine induces apoptosis, inhibits proliferation and invasion through inhibiting NF‐κB signaling pathway in colon cancer cells , 2010, Journal of cellular physiology.

[40]  S. Danishefsky,et al.  Total synthesis of (+/-)-aplykurodinone-1: traceless stereochemical guidance. , 2010, Journal of the American Chemical Society.

[41]  G. Schnakenburg,et al.  4-exo cyclizations by template catalysis. , 2009, Angewandte Chemie.

[42]  B. Grzybowski,et al.  The 'wired' universe of organic chemistry. , 2009, Nature chemistry.

[43]  S. Yous,et al.  A mild and efficient route to 2-benzyl tryptamine derivatives via ring-opening of β-carbolines , 2008 .

[44]  P. Gmeiner,et al.  A consecutive Diels–Alder approach toward a Tet repressor directed combinatorial library , 2006 .

[45]  T. Lambert,et al.  Total synthesis of UCS1025A. , 2006, Journal of the American Chemical Society.

[46]  M. Fiałkowski,et al.  Architecture and evolution of organic chemistry. , 2005, Angewandte Chemie.

[47]  James D White,et al.  (R)‐(+)‐3,4‐Dimethylcyclohex‐2‐en‐1‐one , 2005 .

[48]  Matthew H Todd,et al.  Computer-aided organic synthesis. , 2005, Chemical Society reviews.

[49]  Mark S. Taylor,et al.  Highly enantioselective catalytic acyl-pictet-spengler reactions. , 2004, Journal of the American Chemical Society.

[50]  M. Jung,et al.  Efficient synthesis of a tricyclic BCD analogue of ouabain: Lewis acid catalyzed Diels-Alder reactions of sterically hindered systems. , 2002, Angewandte Chemie.

[51]  C. Dai,et al.  Scabrolides A-D, four new norditerpenoids isolated from the soft coral Sinularia scabra. , 2002, Journal of natural products.

[52]  C. Willis,et al.  Oxonia-cope rearrangement and side-chain exchange in the Prins cyclization. , 2002, Organic letters.

[53]  K. Nicolaou,et al.  A New Method for the One-Step Synthesis of α,β-Unsaturated Carbonyl Systems from Saturated Alcohols and Carbonyl Compounds , 2000 .

[54]  Gremmen,et al.  Enantiopure Tetrahydro-beta-carbolines via Pictet-Spengler Reactions with N-Sulfinyl Tryptamines. , 2000, Organic letters.

[55]  Rainer Herges,et al.  Computer-assisted solution of chemical problems : the historical development and the present state of the art of a new discipline of chemistry , 1993 .

[56]  Stephen Hanessian,et al.  The psychobiological basis of heuristic synthesis planning - man, machine and the chiron approach , 1990 .

[57]  A F Sanders,et al.  Empirical Explorations of SYNCHEM , 1977, Science.

[58]  J. B. Hendrickson,et al.  Systematic synthesis design. 6. Yield analysis and convergency , 1977 .

[59]  E J Corey,et al.  Computer-assisted design of complex organic syntheses. , 1969, Science.

[60]  Heng Li,et al.  Polycyclic furanobutenolide-derived norditerpenoids from the South China Sea soft corals Sinularia scabra and Sinularia polydactyla with immunosuppressive activity. , 2019, Bioorganic chemistry.

[61]  Fayang G. Qiu,et al.  Total Synthesis of (+)-Aplykurodinone-1. , 2017, Organic letters.

[62]  Claude Sammut,et al.  Beam Search , 2010, Encyclopedia of Machine Learning and Data Mining.

[63]  T. Kametani,et al.  Total synthesis of (±)-dauricine , 1964 .