The fluid limit of the multiclass processor sharing queue

Consider a single server queueing system with several classes of customers, each having its own renewal input process and its own general service times distribution. Upon completing service, customers may leave, or re-enter the queue, possibly as customers of a different class. The server is operating under the egalitarian processor sharing discipline. Building on prior work by Gromoll et al. (Ann. Appl. Probab. 12:797–859, 2002) and Puha et al. (Math. Oper. Res. 31(2):316–350, 2006), we establish the convergence of a properly normalized state process to a fluid limit characterized by a system of algebraic and integral equations. We show the existence of a unique solution to this system of equations, both for a stable and an overloaded queue. We also describe the asymptotic behavior of the trajectories of the fluid limit.

[1]  Eitan Altman,et al.  DPS queues with stationary ergodic service times and the performance of TCP in overload , 2004, IEEE INFOCOM 2004.

[2]  Donald A. Dawson,et al.  Measure-valued Markov processes , 1993 .

[3]  H. Girardey,et al.  Trajectories , 2009, Handbook of Critical Agrarian Studies.

[4]  Alain Jean-Marie,et al.  On the transient behavior of the processor sharing queue , 1994, Queueing Syst. Theory Appl..

[5]  Amber L. Puha,et al.  Invariant states and rates of convergence for a critical fluid model of a processor sharing queue , 2004 .

[6]  Alexander L. Stolyar,et al.  The Fluid Limit of an Overloaded Processor Sharing Queue , 2006, Math. Oper. Res..

[7]  Maury Bramson,et al.  State space collapse with application to heavy traffic limits for multiclass queueing networks , 1998, Queueing Syst. Theory Appl..

[8]  Eitan Altman,et al.  A survey on discriminatory processor sharing , 2006, Queueing Syst. Theory Appl..

[9]  Maury Bramson,et al.  Convergence to equilibria for fluid models of FIFO queueing networks , 1996, Queueing Syst. Theory Appl..

[10]  Amber L. Puha,et al.  THE FLUID LIMIT OF A HEAVILY LOADED PROCESSOR SHARING QUEUE , 2002 .

[11]  Hong Chen,et al.  Fluid approximations for a processor-sharing queue , 1997, Queueing Syst. Theory Appl..

[12]  J. Hunter,et al.  ASYMPTOTIC RESULTS by , 1973 .

[13]  K. Athreya,et al.  FELLER'S RENEWAL THEOREM FOR SYSTEMS OF RENEWAL EQUATIONS , 2013 .

[14]  Philippe Robert,et al.  Fluid Limits for Processor-Sharing Queues with Impatience , 2008, Math. Oper. Res..

[15]  Maury Bramson,et al.  Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks , 1996, Queueing Syst. Theory Appl..

[16]  R. Durrett Probability: Theory and Examples , 1993 .

[17]  Ruth J. Williams,et al.  Fluid limits for networks with bandwidth sharing and general document size distributions. , 2009, 0903.0291.

[18]  Benoîte de Saporta,et al.  Etude de la solution stationnaire de l'équation Y(n+1)=a(n)Y(n)+b(n) à coefficients aléatoires , 2004 .

[19]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[20]  Ruth J. Williams,et al.  Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse , 1998, Queueing Syst. Theory Appl..

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  H. C. Gromoll Diffusion approximation for a processor sharing queue in heavy traffic , 2004, math/0405298.

[23]  S. F. Yashkov,et al.  Processor sharing: A survey of the mathematical theory , 2007 .

[24]  Mauro Fabrizio,et al.  Existence and Uniqueness , 2021, Thermodynamics of Materials with Memory.

[25]  Sem C. Borst,et al.  Bandwidth-sharing networks in overload , 2007, Perform. Evaluation.

[26]  Alain Jean-Marie,et al.  Population effects in multiclass processor sharing queues , 2009, VALUETOOLS.

[27]  Bert Zwart,et al.  Law of Large Number Limits of Limited Processor-Sharing Queues , 2009, Math. Oper. Res..

[28]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[29]  Lukasz Kruk,et al.  Heavy traffic limit for processor sharing queue with soft deadlines , 2007, 0707.4600.