Microfabricated capillary electrophoresis sensor for uranium (VI)

Abstract Arsenazo III, a metallochromic ligand colorimetrically sensitive to the metal complexation of lanthanide and actinide metal ions, is applied to a capillary electrophoresis microchip for the detection of uranium (VI) and various lanthanide metal ions. The glass microchip contained 100 μm deep by 200 μm wide microchannels etched in a simple cross pattern with an 80 mm separation channel length and an 8 mm injection channel length. Detection of the Arsenazo III metal complexes is achieved using a red light emitting diode (LED) light source and a photodiode array detector. Carbowax 20M is incorporated into the background electrolyte in order to eliminate the electroosmotic flow and prevent dye adsorption on the microchannel walls. Separation of uranium from four lanthanide metal ions is demonstrated in under 2 min. The addition of diethylenetriaminepentaacetic acid (DTPA) to the background electrolyte is found to be an effective means of eliminating any interference from lanthanide, transition and alkaline earth metal ions. Direct load injection of a pre-complexed metal ion mixture onto the microchannel gave a detection limit of 23 ppb uranium (VI) in the presence of seven lanthanide impurities (1.5 ppm each) in under 55 s.

[1]  A. Timerbaev,et al.  Metal ion capillary electrophoresis with direct UV detection effect of a charged surfactant on the migration behaviour of metal chelates , 1994 .

[2]  M. Macka,et al.  Separation of uranium(VI) and lanthanides by capillary electrophoresis using on-capillary complexation with arsenazo III , 1998 .

[3]  K. Cheng,et al.  CRC Handbook of Organic Analytical Reagents , 1982 .

[4]  M. Macka,et al.  Determination of metal ions by capillary electrophoresis , 1997, Electrophoresis.

[5]  Paul C. H. Li,et al.  Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. , 1997, Analytical chemistry.

[6]  Hossein Salimi-Moosavi,et al.  Electroosmotic Pumping of Organic Solvents and Reagents in Microfabricated Reactor Chips , 1997 .

[7]  D. J. Harrison,et al.  Microfabrication of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices , 1996 .

[8]  J. Michael Ramsey,et al.  Fused Quartz Substrates for Microchip Electrophoresis , 1995 .

[9]  S. Jacobson,et al.  Microchip device for performing enzyme assays. , 1997, Analytical chemistry.

[10]  F. Strelow,et al.  Comparative study of the masking effect of various complexans in the spectrophotometric determination of uranium with arsenazo III and chlorophosphonazo III. , 1979, Talanta.

[11]  S. Jacobson,et al.  Microfabricated chemical measurement systems , 1995, Nature Medicine.

[12]  Bifeng Liu,et al.  Separation of thorium, uranium and rare-earth elements with 2-[(2-arsenophenyl)-azo]-1,8-dihydroxy-7-[(2,4,6-tribromophenyl)azo]-naphthalene-3,6-disulfonic acid by capillary electrophoresis , 1998 .

[13]  H. E. Rohwer,et al.  Interactions of uranium and thorium with arsenazo III in an aqueous medium , 1997 .

[14]  L. Ziaugra,et al.  DNA sequencing on microfabricated electrophoretic devices. , 1998, Analytical chemistry.

[15]  Andreas Manz,et al.  Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze? , 1991 .

[16]  D. J. Harrison,et al.  A multireflection cell for enhanced absorbance detection in microchip‐based capillary electrophoresis devices , 2000, Electrophoresis.

[17]  D P Glavin,et al.  Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. , 1999, Analytical chemistry.

[18]  D. J. Harrison,et al.  Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip , 1992 .