Selected topics in statistical computing

The field of computational statistics refers to statistical methods or tools that are computationally intensive. Due to the recent advances in computing power, some of these methods have become pro...

[1]  W. Härdle Applied Nonparametric Regression , 1992 .

[2]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[3]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[4]  R. Viertl On the Future of Data Analysis , 2002 .

[5]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[6]  S. Meyn,et al.  Stability of Markovian processes II: continuous-time processes and sampled chains , 1993, Advances in Applied Probability.

[7]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[8]  C. J. Stone,et al.  An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates , 1984 .

[9]  Jianqing Fan,et al.  Fast implementations of nonparametric curve estimators , 1993 .

[10]  Byeong U. Park,et al.  Time-Varying Additive Models for Longitudinal Data , 2013 .

[11]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[12]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[13]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[14]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[15]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[16]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[17]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[18]  E. Nadaraya On Estimating Regression , 1964 .

[19]  D. M. Titterington,et al.  Cross-validation in nonparametric estimation of probabilities and probability densities , 1984 .

[20]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[21]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[22]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[23]  M. H. Quenouille Approximate tests of correlation in time-series 3 , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  B. Yandell Spline smoothing and nonparametric regression , 1989 .

[25]  H. Wickham,et al.  Density estimation in R , 2014 .

[26]  Jerome H. Friedman,et al.  DATA MINING AND STATISTICS: WHAT''S THE CONNECTION , 1997 .

[27]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[28]  T. A. Ryan,et al.  Minitab Student Handbook , 1979 .

[29]  Andrew D. Martin,et al.  MCMCpack: Markov chain Monte Carlo in R , 2011 .

[30]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[31]  J. Tukey The Future of Data Analysis , 1962 .

[32]  J. Rosenthal,et al.  Markov Chain Monte Carlo , 2018 .

[33]  Enno Mammen,et al.  The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .

[34]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[35]  J. L. Hodges,et al.  The Efficiency of Some Nonparametric Competitors of the t-Test , 1956 .

[36]  S. Wood,et al.  Generalized additive models for large data sets , 2015 .

[37]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[38]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[39]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[40]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[41]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[42]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[43]  Jean D. Opsomer,et al.  Asymptotic Properties of Backfitting Estimators , 2000 .

[44]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[45]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[46]  M. H. Quenouille Approximate Tests of Correlation in Time‐Series , 1949 .

[47]  Charles J. Geyer,et al.  Introduction to Markov Chain Monte Carlo , 2011 .

[48]  P. Hall Large Sample Optimality of Least Squares Cross-Validation in Density Estimation , 1983 .

[49]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[50]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[51]  Michael Frueh,et al.  Plots Transformations And Regression An Introduction To Graphical Methods Of Diagnostic Regression Analysis , 2016 .

[52]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[53]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[54]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[55]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[56]  A. Gelman Iterative and Non-iterative Simulation Algorithms , 2006 .

[57]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[58]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[59]  James Stephen Marron,et al.  Choosing a Kernel Regression Estimator , 1991 .

[60]  C. J. Stone,et al.  A study of logspline density estimation , 1991 .

[61]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[62]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[63]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[64]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[65]  C. J. Stone,et al.  Hazard Regression , 2022 .

[66]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[67]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[68]  David M. Allen,et al.  The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .

[69]  Douglas W. Nychka,et al.  Splines as Local Smoothers , 1995 .

[70]  B. Silverman,et al.  Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .

[71]  Sarah Kuester,et al.  Smoothing Techniques With Implementation In S , 2016 .

[72]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[73]  G. Wahba,et al.  When is the optimal regularization parameter insensitive to the choice of the loss function , 1990 .

[74]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[75]  G. Wahba Spline models for observational data , 1990 .

[76]  Daniela Giovanna Calò,et al.  Data Mining and Statistics: what's the connection? , 2009 .

[77]  Chong Gu,et al.  Cross-Validating Non-Gaussian Data , 1992 .

[78]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[79]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[81]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[82]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .