Selected topics in statistical computing
暂无分享,去创建一个
[1] W. Härdle. Applied Nonparametric Regression , 1992 .
[2] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[3] C. J. Stone,et al. Additive Regression and Other Nonparametric Models , 1985 .
[4] R. Viertl. On the Future of Data Analysis , 2002 .
[5] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[6] S. Meyn,et al. Stability of Markovian processes II: continuous-time processes and sampled chains , 1993, Advances in Applied Probability.
[7] Alan Y. Chiang,et al. Generalized Additive Models: An Introduction With R , 2007, Technometrics.
[8] C. J. Stone,et al. An Asymptotically Optimal Window Selection Rule for Kernel Density Estimates , 1984 .
[9] Jianqing Fan,et al. Fast implementations of nonparametric curve estimators , 1993 .
[10] Byeong U. Park,et al. Time-Varying Additive Models for Longitudinal Data , 2013 .
[11] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[12] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[13] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[14] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[15] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[16] Guohua Pan,et al. Local Regression and Likelihood , 1999, Technometrics.
[17] B. Efron,et al. The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .
[18] E. Nadaraya. On Estimating Regression , 1964 .
[19] D. M. Titterington,et al. Cross-validation in nonparametric estimation of probabilities and probability densities , 1984 .
[20] G. Wahba. Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .
[21] G. Casella,et al. Explaining the Gibbs Sampler , 1992 .
[22] R. Tibshirani,et al. Generalized additive models for medical research , 1986, Statistical methods in medical research.
[23] M. H. Quenouille. Approximate tests of correlation in time-series 3 , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[24] B. Yandell. Spline smoothing and nonparametric regression , 1989 .
[25] H. Wickham,et al. Density estimation in R , 2014 .
[26] Jerome H. Friedman,et al. DATA MINING AND STATISTICS: WHAT''S THE CONNECTION , 1997 .
[27] M. C. Jones,et al. Spline Smoothing and Nonparametric Regression. , 1989 .
[28] T. A. Ryan,et al. Minitab Student Handbook , 1979 .
[29] Andrew D. Martin,et al. MCMCpack: Markov chain Monte Carlo in R , 2011 .
[30] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .
[31] J. Tukey. The Future of Data Analysis , 1962 .
[32] J. Rosenthal,et al. Markov Chain Monte Carlo , 2018 .
[33] Enno Mammen,et al. The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .
[34] M. Wand,et al. Multivariate Locally Weighted Least Squares Regression , 1994 .
[35] J. L. Hodges,et al. The Efficiency of Some Nonparametric Competitors of the t-Test , 1956 .
[36] S. Wood,et al. Generalized additive models for large data sets , 2015 .
[37] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[38] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[39] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[40] M. C. Jones,et al. A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .
[41] A. Raftery,et al. How Many Iterations in the Gibbs Sampler , 1991 .
[42] Jianqing Fan. Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .
[43] Jean D. Opsomer,et al. Asymptotic Properties of Backfitting Estimators , 2000 .
[44] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[45] R. Tibshirani,et al. Linear Smoothers and Additive Models , 1989 .
[46] M. H. Quenouille. Approximate Tests of Correlation in Time‐Series , 1949 .
[47] Charles J. Geyer,et al. Introduction to Markov Chain Monte Carlo , 2011 .
[48] P. Hall. Large Sample Optimality of Least Squares Cross-Validation in Density Estimation , 1983 .
[49] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[50] Sylvia Richardson,et al. Markov chain concepts related to sampling algorithms , 1995 .
[51] Michael Frueh,et al. Plots Transformations And Regression An Introduction To Graphical Methods Of Diagnostic Regression Analysis , 2016 .
[52] S. Wood. Generalized Additive Models: An Introduction with R , 2006 .
[53] T. Hastie,et al. Local Regression: Automatic Kernel Carpentry , 1993 .
[54] C. J. Stone,et al. Consistent Nonparametric Regression , 1977 .
[55] Jianqing Fan. Design-adaptive Nonparametric Regression , 1992 .
[56] A. Gelman. Iterative and Non-iterative Simulation Algorithms , 2006 .
[57] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[58] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[59] James Stephen Marron,et al. Choosing a Kernel Regression Estimator , 1991 .
[60] C. J. Stone,et al. A study of logspline density estimation , 1991 .
[61] C. J. Stone,et al. Optimal Rates of Convergence for Nonparametric Estimators , 1980 .
[62] S. T. Buckland,et al. An Introduction to the Bootstrap. , 1994 .
[63] M. Kendall,et al. The advanced theory of statistics , 1945 .
[64] Bradley P. Carlin,et al. Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .
[65] C. J. Stone,et al. Hazard Regression , 2022 .
[66] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[67] M. Chavance. [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.
[68] David M. Allen,et al. The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .
[69] Douglas W. Nychka,et al. Splines as Local Smoothers , 1995 .
[70] B. Silverman,et al. Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .
[71] Sarah Kuester,et al. Smoothing Techniques With Implementation In S , 2016 .
[72] J. Simonoff. Smoothing Methods in Statistics , 1998 .
[73] G. Wahba,et al. When is the optimal regularization parameter insensitive to the choice of the loss function , 1990 .
[74] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[75] G. Wahba. Spline models for observational data , 1990 .
[76] Daniela Giovanna Calò,et al. Data Mining and Statistics: what's the connection? , 2009 .
[77] Chong Gu,et al. Cross-Validating Non-Gaussian Data , 1992 .
[78] B. Silverman,et al. Nonparametric regression and generalized linear models , 1994 .
[79] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[80] A. Bowman. An alternative method of cross-validation for the smoothing of density estimates , 1984 .
[81] H. Müller,et al. Kernel estimation of regression functions , 1979 .
[82] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .