Finding the Shortest Watchman Route in a Simple Polygon

Abstract. We present the first polynomial time algorithm that finds the shortest route in a simple polygon such that all points of the polygon are visible from the route. This route is called the shortest watchman route, and we do not assume any restrictions on the route or on the simple polygon. Our algorithm runs in worst case O(n6) time, but it is adaptive, making it run faster on polygons with a simple structure.

[1]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[2]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[3]  D. T. Lee,et al.  An Optimal Algorithm for Finding the Kernel of a Polygon , 1979, JACM.

[4]  Elefterios A. Melissaratos,et al.  On solving geometric optimization problems using shortest paths , 1990, SCG '90.

[5]  A. Aggarwal The art gallery theorem: its variations, applications and algorithmic aspects , 1984 .

[6]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[7]  Svante Carlsson,et al.  Finding the Shortest Watchman Route in a Simple Polygon , 1993, ISAAC.

[8]  Tomio Hirata,et al.  Constructing Shortest Watchman Routes by Divide-and-Conquer , 1993, ISAAC.

[9]  Subhash Suri,et al.  A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.

[10]  XUEHOU TAN,et al.  Corrigendum to "An Incremental Algorithm for Constructing Shortest Watchman Routes" , 1999, Int. J. Comput. Geom. Appl..

[11]  Wei-Pand Chin,et al.  Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..

[12]  Bengt J. Nilsson,et al.  Concerning the Time Bounds of Existing Shortest Watchman Route Algorithms , 1997, FCT.

[13]  Svante Carlsson,et al.  Optimum Guard Covers and m-Watchmen Routes for Restricted Polygons , 1991, WADS.

[14]  Tomio Hirata,et al.  An incremental algorithm for constructing shortest watchman routes , 1993, Int. J. Comput. Geom. Appl..

[15]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.