Finding the Shortest Watchman Route in a Simple Polygon
暂无分享,去创建一个
[1] D. T. Lee,et al. Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.
[2] Bernard Chazelle. Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..
[3] D. T. Lee,et al. An Optimal Algorithm for Finding the Kernel of a Polygon , 1979, JACM.
[4] Elefterios A. Melissaratos,et al. On solving geometric optimization problems using shortest paths , 1990, SCG '90.
[5] A. Aggarwal. The art gallery theorem: its variations, applications and algorithmic aspects , 1984 .
[6] Robert E. Tarjan,et al. Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..
[7] Svante Carlsson,et al. Finding the Shortest Watchman Route in a Simple Polygon , 1993, ISAAC.
[8] Tomio Hirata,et al. Constructing Shortest Watchman Routes by Divide-and-Conquer , 1993, ISAAC.
[9] Subhash Suri,et al. A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.
[10] XUEHOU TAN,et al. Corrigendum to "An Incremental Algorithm for Constructing Shortest Watchman Routes" , 1999, Int. J. Comput. Geom. Appl..
[11] Wei-Pand Chin,et al. Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..
[12] Bengt J. Nilsson,et al. Concerning the Time Bounds of Existing Shortest Watchman Route Algorithms , 1997, FCT.
[13] Svante Carlsson,et al. Optimum Guard Covers and m-Watchmen Routes for Restricted Polygons , 1991, WADS.
[14] Tomio Hirata,et al. An incremental algorithm for constructing shortest watchman routes , 1993, Int. J. Comput. Geom. Appl..
[15] D. T. Lee,et al. Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.