暂无分享,去创建一个
Ilias Diakonikolas | Alistair Stewart | Anastasios Sidiropoulos | Ilias Diakonikolas | Alistair Stewart | Anastasios Sidiropoulos
[1] H. D. Brunk. On the Estimation of Parameters Restricted by Inequalities , 1958 .
[2] Santosh S. Vempala,et al. Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..
[3] Carl M. O’Brien,et al. Nonparametric Estimation under Shape Constraints: Estimators, Algorithms and Asymptotics , 2016 .
[4] D. L. Hanson,et al. Consistency in Concave Regression , 1976 .
[5] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[6] R. Stanley. Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .
[7] Rocco A. Servedio,et al. Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms , 2014, NIPS.
[8] Daniel M. Kane,et al. Optimal Learning via the Fourier Transform for Sums of Independent Integer Random Variables , 2015, COLT.
[9] S. Vempala,et al. Hit-and-Run from a Corner , 2006 .
[10] Fadoua Balabdaoui,et al. Estimation of a k‐monotone density: characterizations, consistency and minimax lower bounds , 2010, Statistica Neerlandica.
[11] E. Wegman. Maximum likelihood estimation of a unimodal density. II , 1970 .
[12] Arlene K. H. Kim,et al. Global rates of convergence in log-concave density estimation , 2014, 1404.2298.
[13] M. Cule,et al. Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.
[14] P. Groeneboom. Estimating a monotone density , 1984 .
[15] Charles R. Doss,et al. GLOBAL RATES OF CONVERGENCE OF THE MLES OF LOG-CONCAVE AND s-CONCAVE DENSITIES. , 2013, Annals of statistics.
[16] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[17] Rocco A. Servedio,et al. Density estimation for shift-invariant multidimensional distributions , 2018, ITCS.
[18] Ilias Diakonikolas,et al. Sample-Optimal Density Estimation in Nearly-Linear Time , 2015, SODA.
[19] S. Vempala,et al. The geometry of logconcave functions and sampling algorithms , 2007 .
[20] G. Walther. Inference and Modeling with Log-concave Distributions , 2009, 1010.0305.
[21] L. Duembgen,et al. Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency , 2007, 0709.0334.
[22] Chinmay Hegde,et al. Fast and Near-Optimal Algorithms for Approximating Distributions by Histograms , 2015, PODS.
[23] Ryan O'Donnell,et al. Learning Sums of Independent Integer Random Variables , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[24] Daniel M. Kane,et al. Efficient Robust Proper Learning of Log-concave Distributions , 2016, ArXiv.
[25] L. Birge. On the Risk of Histograms for Estimating Decreasing Densities , 1987 .
[26] Qiyang Han,et al. APPROXIMATION AND ESTIMATION OF s-CONCAVE DENSITIES VIA RÉNYI DIVERGENCES. , 2015, Annals of statistics.
[27] M. Cule,et al. Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density , 2009, 0908.4400.
[28] Anindya De,et al. A size-free CLT for poisson multinomials and its applications , 2015, STOC.
[29] Bernd Sturmfels,et al. Geometry of Log-Concave Density Estimation , 2017, Discrete & Computational Geometry.
[30] Arlene K. H. Kim,et al. Adaptation in log-concave density estimation , 2016, The Annals of Statistics.
[31] Rocco A. Servedio,et al. Learning k-Modal Distributions via Testing , 2012, Theory Comput..
[32] Rocco A. Servedio,et al. Learning mixtures of structured distributions over discrete domains , 2012, SODA.
[33] Jon A Wellner,et al. Estimation of a discrete monotone distribution. , 2009, Electronic journal of statistics.
[34] M. An. Log-Concave Probability Distributions: Theory and Statistical Testing , 1996 .
[35] R. Koenker,et al. QUASI-CONCAVE DENSITY ESTIMATION , 2010, 1007.4013.
[36] J. Wellner,et al. Estimation of a k-monotone density: limit distribution theory and the Spline connection , 2005, math/0509081.
[37] J. Wellner,et al. On the rate of convergence of the maximum likelihood estimator of a k-monotone density , 2009 .
[38] Daniel M. Kane,et al. Learning Multivariate Log-concave Distributions , 2016, COLT.
[39] Rocco A. Servedio,et al. Learning Poisson Binomial Distributions , 2011, STOC '12.
[40] Gregory Valiant,et al. An Efficient Algorithm for High-Dimensional Log-Concave Maximum Likelihood , 2018, ArXiv.
[41] Anne-Laure Fougères,et al. Estimation de densités unimodales , 1997 .
[42] J. M. Bremner,et al. Statistical Inference under Restrictions , 1973 .
[43] Daniel M. Kane,et al. The fourier transform of poisson multinomial distributions and its algorithmic applications , 2015, STOC.
[44] Prakasa Rao. Estimation of a unimodal density , 1969 .
[45] Daniel M. Kane,et al. Properly Learning Poisson Binomial Distributions in Almost Polynomial Time , 2015, COLT.
[46] John C. Duchi. Introductory lectures on stochastic optimization , 2018, IAS/Park City Mathematics Series.
[47] A. U.S.,et al. Testing for multimodality with dependent data , 2004 .
[48] L. Birge. Estimating a Density under Order Restrictions: Nonasymptotic Minimax Risk , 1987 .
[49] R. Samworth,et al. Smoothed log-concave maximum likelihood estimation with applications , 2011, 1102.1191.
[50] Fabian Rathke,et al. Fast multivariate log-concave density estimation , 2018, Comput. Stat. Data Anal..
[51] J. Wellner,et al. Limit Distribution Theory for Maximum Likelihood Estimation of a Log-Concave Density. , 2007, Annals of statistics.
[52] M. Bagnoli,et al. Log-concave probability and its applications , 2004 .
[53] U. Grenander. On the theory of mortality measurement , 1956 .
[54] Fadoua Balabdaoui,et al. Inference for a mixture of symmetric distributions under log-concavity , 2014, 1411.4708.
[55] R. Samworth. Recent Progress in Log-Concave Density Estimation , 2017, Statistical Science.
[56] Ilias Diakonikolas,et al. Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities , 2018, COLT.
[57] Jerry Li,et al. Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms , 2018, COLT.
[58] Ronitt Rubinfeld,et al. Testing Shape Restrictions of Discrete Distributions , 2015, Theory of Computing Systems.
[59] J. Wellner,et al. Log-Concavity and Strong Log-Concavity: a review. , 2014, Statistics surveys.
[60] Miklós Simonovits,et al. Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.
[61] Rocco A. Servedio,et al. Explorer Efficient Density Estimation via Piecewise Polynomial Approximation , 2013 .