Ramsey classes: examples and constructions

This article is concerned with classes of relational structures that are closed under taking substructures and isomorphism, that have the joint embedding property, and that furthermore have the Ramsey property, a strong combinatorial property which resembles the statement of Ramsey's classic theorem. Such classes of structures have been called Ramsey classes. Nesetril and Roedl showed that they have the amalgamation property, and therefore each such class has a homogeneous Fraisse-limit. Ramsey classes have recently attracted attention due to a surprising link with the notion of extreme amenability from topological dynamics. Other applications of Ramsey classes include reduct classification of homogeneous structures. We give a survey of the various fundamental Ramsey classes and their (often tricky) combinatorial proofs, and about various methods to derive new Ramsey classes from known Ramsey classes. Finally, we state open problems related to a potential classification of Ramsey classes.

[1]  Walter Deuber A generalization of Ramsey's theorem for regular trees , 1975 .

[2]  Yonatan Gutman,et al.  On relative extreme amenability , 2011, 1105.6221.

[3]  Lionel Nguyen Van Th'e,et al.  Universal flows of closed subgroups of $S_{\infty}$ and relative extreme amenability , 2012, 1201.1472.

[4]  Lionel Nguyen More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions , 2012 .

[5]  R. Fraïssé Sur l'extension aux relations de quelques propriétés des ordres , 1954 .

[6]  Peter M. Neumann,et al.  Relations related to betweenness : their structure and automorphisms , 1998 .

[7]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[8]  Michael Pinsker,et al.  Permutations on the Random Permutation , 2015, Electron. J. Comb..

[9]  Roland Fraïssé Theory of relations , 1986 .

[10]  Vojtěch Rödl,et al.  Mathematics of Ramsey Theory , 1991 .

[11]  Alistair H. Lachlan Structures coordinatized by indiscernible sets , 1987, Ann. Pure Appl. Log..

[12]  Miodrag Sokic Ramsey Property of Posets and Related Structures , 2011 .

[13]  Andy Zucker Amenability and Unique Ergodicity of Automorphism Groups of Fra\"iss\'e Structures , 2013 .

[14]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[15]  Michael Pinsker,et al.  Decidability of Definability , 2013, The Journal of Symbolic Logic.

[16]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[17]  Andr'as Pongr'acz,et al.  Topological dynamics of unordered Ramsey structures , 2014, 1401.7766.

[18]  András Pongrácz Reducts of the Henson graphs with a constant , 2017, Ann. Pure Appl. Log..

[19]  P. Cameron Transitivity of permutation groups on unordered sets , 1976 .

[20]  G. Cherlin,et al.  The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N-Tournaments , 1998 .

[21]  A. H. Lachlan,et al.  Countable homogeneous tournaments , 1984 .

[22]  M. Sokic,et al.  Ramsey property, ultrametric spaces, finite posets, and universal minimal flows , 2013 .

[23]  Jaroslav Nešetřil Ramsey theory , 1996 .

[24]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[25]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[26]  A. Lachlan,et al.  Stable finitely homogeneous structures , 1986 .

[27]  Jan Foniok On Ramsey properties of classes with forbidden trees , 2014, Log. Methods Comput. Sci..

[28]  Michael Pinsker,et al.  The 42 reducts of the random ordered graph , 2013, 1309.2165.

[29]  Manuel Bodirsky,et al.  Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.

[30]  Simon Thomas,et al.  Reducts of Random Hypergraphs , 1996, Ann. Pure Appl. Log..

[31]  Matemáticas Theory of Relations , 2013 .

[32]  Barnaby Martin,et al.  On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction , 2010, LICS.

[33]  Andy Zucker Topological Dynamics of Closed Subgroups of $S_\infty$ , 2014 .

[34]  Julien Melleray,et al.  Polish groups with metrizable universal minimal flows , 2014, 1404.6167.

[35]  Vojtech Rödl,et al.  Ramsey Classes of Set Systems , 1983, J. Comb. Theory, Ser. A.

[36]  Claude Laflamme,et al.  Ramsey Precompact Expansions of Homogeneous Directed Graphs , 2013, Electron. J. Comb..

[37]  Diana Piguet,et al.  Finite trees are Ramsey under topological embeddings , 2010, 1002.1557.

[38]  Jaroslav Nesetril,et al.  Ramsey Classes and Homogeneous Structures , 2005, Combinatorics, Probability and Computing.

[39]  Keith R. Milliken,et al.  A Ramsey Theorem for Trees , 1979, J. Comb. Theory, Ser. A.

[40]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[41]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[42]  Manuel Bodirsky New Ramsey Classes from Old , 2014, Electron. J. Comb..

[43]  D. Saracino Model companions for ℵ₀-categorical theories , 1973 .

[44]  Leo Harrington,et al.  Models Without Indiscernibles , 1978, J. Symb. Log..

[45]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[46]  Michael Pinsker,et al.  Reducts of the random partial order , 2011, 1111.7109.

[47]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[48]  J. Spencer Ramsey Theory , 1990 .

[49]  Peter J. Cameron,et al.  The Random Graph Revisited , 2001 .

[50]  Simon Thomas,et al.  Reducts of the random graph , 1991, Journal of Symbolic Logic.

[51]  H. J. Prmel,et al.  Ramsey Theory for Discrete Structures , 2013 .

[52]  Lionel Nguyen Van Th'e,et al.  More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions , 2012, 1201.1270.

[53]  Manuel Bodirsky Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..

[54]  Julia Böttcher,et al.  Ramsey Properties of Permutations , 2013, Electron. J. Comb..