Investigating galactic double white dwarfs for the sub-mHz gravitational wave mission ASTROD-GW

A large number of galactic binary systems emit gravitational waves (GW) continuously with frequencies below $\sim$10 mHz. The LISA mission could identify tens of thousands of binaries over years of observation and will be subject to the confusion noise around 1 mHz yielded by the unresolved sources. Beyond LISA, there are several missions have been proposed to observe GWs in the sub-mHz range where the galactic foreground is expected to be overwhelming the instrumental noises. In this study, we investigate the detectability of sub-mHz GW missions to detect the galactic double white dwarf (DWD) binaries and evaluate the confusion noise produced by the undistinguished DWDs. This confusion noise could also be viewed as a stochastic GW foreground and be effectively observed in the sub-mHz band. The parameter determinations for the modeled foreground are examined by employing different detector sensitivities and population models. By assuming the determined foregrounds could be subtracted from the data, we evaluate the residuals which are expected to have power spectral densities two orders of magnitude lower than the originals data.

[1]  W. Martens,et al.  LISAmax: Improving the Gravitational-Wave Sensitivity by Two Orders of Magnitude , 2023, 2304.08287.

[2]  T. Littenberg,et al.  Prototype global analysis of LISA data with multiple source types , 2023, Physical Review D.

[3]  Wen-Hong Ruan,et al.  Confusion noise from Galactic binaries for Taiji , 2023, Physical Review D.

[4]  Xue-Hao Zhang,et al.  White dwarf binary modulation can help stochastic gravitational wave background search , 2022, Science China Physics, Mechanics & Astronomy.

[5]  N. Cornish,et al.  LISA Gravitational Wave Sources in a Time-varying Galactic Stochastic Background , 2022, The Astrophysical Journal.

[6]  S. Mohanty,et al.  Resolving Galactic binaries using a network of space-borne gravitational wave detectors , 2022, Physical Review D.

[7]  A. J. Chua,et al.  Assessing the data-analysis impact of LISA orbit approximations using a GPU-accelerated response model , 2022, Physical Review D.

[8]  S. Escoffier,et al.  Astrophysics with the Laser Interferometer Space Antenna , 2022, Living Reviews in Relativity.

[9]  I. Bartos,et al.  Probing the Dark Solar System: Detecting Binary Asteroids with a Space-Based Interferometric Asteroid Explorer , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  G. Wang,et al.  Characterizing instrumental noise and stochastic gravitational wave signals from combined time-delay interferometry , 2022, Physical Review D.

[11]  R. Luger,et al.  Applying the Metallicity-dependent Binary Fraction to Double White Dwarf Formation: Implications for LISA , 2021, The Astrophysical Journal.

[12]  S. D. Mink,et al.  Gravitational Wave Sources in Our Galactic Backyard: Predictions for BHBH, BHNS, and NSNS Binaries Detectable with LISA , 2021, The Astrophysical Journal.

[13]  P. K. Panda,et al.  GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run , 2021, 2111.03606.

[14]  S. Babak,et al.  The effect of mission duration on LISA science objectives , 2021, General Relativity and Gravitation.

[15]  Marlin B. Schäfer,et al.  3-OGC: Catalog of Gravitational Waves from Compact-binary Mergers , 2021, The Astrophysical Journal.

[16]  S. Babak,et al.  Characterization of the stochastic signal originating from compact binary populations as measured by LISA , 2021, Physical Review D.

[17]  S. Mohanty,et al.  Resolving Galactic binaries in LISA data using particle swarm optimization and cross-validation , 2021, Physical Review D.

[18]  M. J. Williams,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[19]  W. Ni,et al.  Revisiting time delay interferometry for unequal-arm LISA and TAIJI , 2020, Physica Scripta.

[20]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[21]  T. Littenberg,et al.  Global analysis of the gravitational wave signal from Galactic binaries , 2020, Physical Review D.

[22]  C. Moore,et al.  Populations of double white dwarfs in Milky Way satellites and their detectability with LISA , 2020, Astronomy & Astrophysics.

[23]  C. Foot,et al.  AION: an atom interferometer observatory and network , 2019, Journal of Cosmology and Astroparticle Physics.

[24]  M. Merzougui,et al.  ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research , 2019, Classical and Quantum Gravity.

[25]  M. Zevin,et al.  COSMIC Variance in Binary Population Synthesis , 2019, The Astrophysical Journal.

[26]  Antony Lewis,et al.  GetDist: a Python package for analysing Monte Carlo samples , 2019, 1910.13970.

[27]  W. Ni,et al.  Astrodynamical middle-frequency interferometric gravitational wave observatory AMIGO: Mission concept and orbit design , 2019, 1909.04995.

[28]  J. García-Bellido,et al.  Probing the nature of black holes: Deep in the mHz gravitational-wave sky , 2019, Experimental Astronomy.

[29]  J. García-Bellido,et al.  Unveiling the gravitational universe at μ-Hz frequencies , 2019, Experimental Astronomy.

[30]  G. Mueller,et al.  The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range , 2019, Classical and Quantum Gravity.

[31]  Achim Peters,et al.  AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space , 2019, Experimental Astronomy.

[32]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[33]  Duncan A. Brown,et al.  Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO , 2019, 1907.04833.

[34]  T. Littenberg,et al.  Predicting the LISA white dwarf binary population in the Milky Way with cosmological simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[35]  W. Ni,et al.  Orbit design for space atom-interferometer AIGSO , 2019, International Journal of Modern Physics D.

[36]  Peng Xu,et al.  ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna , 2019, International Journal of Modern Physics D.

[37]  M. Ando,et al.  Torsion-Bar Antenna: A ground-based mid-frequency and low-frequency gravitational wave detector , 2018, International Journal of Modern Physics D.

[38]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[39]  E. Rossi,et al.  Detectability of Double White Dwarfs in the Local Group with LISA , 2018, The Astrophysical Journal.

[40]  J. P. López-Zaragoza,et al.  Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20  μHz. , 2018, Physical review letters.

[41]  M. Zhan,et al.  Atomic Interferometric Gravitational-wave Space Observatory (AIGSO) , 2017, 1711.03690.

[42]  M. Kasevich,et al.  Mid-band gravitational wave detection with precision atomic sensors , 2017, 1711.02225.

[43]  Wen-Rui Hu,et al.  The Taiji Program in Space for gravitational wave physics and the nature of gravity , 2017 .

[44]  N. Cornish,et al.  Galactic binary science with the new LISA design , 2017, 1703.09858.

[45]  M. Merzougui,et al.  Exploring gravity with the MIGA large scale atom interferometer , 2017, Scientific Reports.

[46]  Anthony G. A. Brown,et al.  Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA , 2017, 1703.02555.

[47]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[48]  Ettore Majorana,et al.  Low-frequency terrestrial tensor gravitational-wave detector , 2016 .

[49]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[50]  Robert Morgan,et al.  Dark Energy , 2015 .

[51]  Mark A. Kasevich,et al.  Atom interferometric gravitational wave detection using heterodyne laser links , 2015, 1501.06797.

[52]  Philippe Jetzer,et al.  Gravitational wave detection from space , 2014 .

[53]  N. Cornish,et al.  Detecting a Stochastic Gravitational Wave Background in the presence of a Galactic Foreground and Instrument Noise , 2013, 1307.4116.

[54]  W. Ni ASTROD-GW: Overview and Progress , 2012, 1212.2816.

[55]  K. Danzmann,et al.  TDI and clock noise removal for the split interferometry configuration of LISA , 2012 .

[56]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[57]  H. Zinnecker,et al.  A spectroscopic survey on the multiplicity of high-mass stars , 2012, 1205.5238.

[58]  G. Wang,et al.  Time-delay Interferometry for ASTROD-GW☆ , 2012 .

[59]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[60]  G. Nelemans,et al.  GRAVITATIONAL-WAVE EMISSION FROM COMPACT GALACTIC BINARIES , 2012, 1201.4613.

[61]  M. Vallisneri,et al.  Non-sky-averaged sensitivity curves for space-based gravitational-wave observatories , 2012, 1201.3684.

[62]  W. Ni Dark energy, co-evolution of massive black holes with galaxies, and ASTROD-GW , 2011, 1104.5049.

[63]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[64]  G. Wang,et al.  Design of ASTROD-GW Orbit☆☆☆ , 2010 .

[65]  Ritva Keski-Kuha,et al.  An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO) , 2010, 1009.2702.

[66]  N. Cornish,et al.  Discriminating between a stochastic gravitational wave background and instrument noise , 2010, 1002.1291.

[67]  W. Ni Super-ASTROD: probing primordial gravitational waves and mapping the outer solar system , 2008, 0812.0887.

[68]  M. Vallisneri,et al.  Sensitivity and parameter-estimation precision for alternate LISA configurations , 2007, 0710.4369.

[69]  S. Larson,et al.  THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS , 2007, 0705.3272.

[70]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[71]  Naoki Seto,et al.  The Japanese space gravitational wave antenna—DECIGO , 2006 .

[72]  N. Cornish,et al.  Beyond LISA: Exploring future gravitational wave missions , 2005, gr-qc/0506015.

[73]  N. Cornish,et al.  Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.

[74]  Massimo Tinto,et al.  Time delay interferometry , 2003, Living Reviews in Relativity.

[75]  A. Vecchio,et al.  Effect of the LISA response function on observations of monochromatic sources , 2004, gr-qc/0406039.

[76]  N. Cornish,et al.  LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.

[77]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[78]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[79]  J. Armstrong,et al.  Sensitivities of alternate LISA configurations , 2001 .

[80]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[81]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[82]  J. Armstrong,et al.  Time-Delay Interferometry for Space-based Gravitational Wave Searches , 1999 .

[83]  B. Li 李,et al.  New Massive Contact Twin Binary in a Radio-quiet H ii Region Associated with the M17 Complex , 2022 .

[84]  王刚,et al.  Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period , 2015 .

[85]  M. Otto Time-delay interferometry simulations for the laser interferometer space antenna , 2015 .

[86]  C. Lämmerzahl,et al.  ASTROD optimized for Gravitational Wave detection: ASTROD-GW , 2010 .

[87]  H. Wahlquist The Doppler response to gravitational waves from a binary star source , 1987 .

[88]  W. Press,et al.  Gravitational waves. , 1980, Science.

[89]  Hugo D. Wahlquist,et al.  Response of Doppler spacecraft tracking to gravitational radiation , 1975 .