Automatic Generation of Citation Texts in Scholarly Papers: A Pilot Study

In this paper, we study the challenging problem of automatic generation of citation texts in scholarly papers. Given the context of a citing paper A and a cited paper B, the task aims to generate a short text to describe B in the given context of A. One big challenge for addressing this task is the lack of training data. Usually, explicit citation texts are easy to extract, but it is not easy to extract implicit citation texts from scholarly papers. We thus first train an implicit citation extraction model based on BERT and leverage the model to construct a large training dataset for the citation text generation task. Then we propose and train a multi-source pointer-generator network with cross attention mechanism for citation text generation. Empirical evaluation results on a manually labeled test dataset verify the efficacy of our model. This pilot study confirms the feasibility of automatically generating citation texts in scholarly papers and the technique has the great potential to help researchers prepare their scientific papers.

[1]  Dragomir R. Radev,et al.  The ACL anthology network corpus , 2009, Language Resources and Evaluation.

[2]  H. P. Edmundson,et al.  New Methods in Automatic Extracting , 1969, JACM.

[3]  ChengXiang Zhai,et al.  A Constrained Hidden Markov Model Approach for Non-Explicit Citation Context Extraction , 2014, SDM.

[4]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[5]  Hai Zhuge,et al.  Summarization of scientific documents by detecting common facts in citations , 2014, Future Gener. Comput. Syst..

[6]  Henry G. Small,et al.  Interpreting maps of science using citation context sentiments: a preliminary investigation , 2011, Scientometrics.

[7]  Simone Teufel,et al.  Detection of Implicit Citations for Sentiment Detection , 2012, ACL 2012.

[8]  Raymond J. Mooney,et al.  Learning for Semantic Parsing with Statistical Machine Translation , 2006, NAACL.

[9]  Nazli Goharian,et al.  Scientific document summarization via citation contextualization and scientific discourse , 2017, International Journal on Digital Libraries.

[10]  Dragomir R. Radev,et al.  Identifying Non-Explicit Citing Sentences for Citation-Based Summarization. , 2010, ACL.

[11]  Jungo Kasai,et al.  ScisummNet: A Large Annotated Corpus and Content-Impact Models for Scientific Paper Summarization with Citation Networks , 2019, AAAI.

[12]  Min-Yen Kan,et al.  Towards Automated Related Work Summarization , 2010, COLING.

[13]  Xiaojun Wan,et al.  Automatic Generation of Related Work Sections in Scientific Papers: An Optimization Approach , 2014, EMNLP.

[14]  Christopher D. Manning,et al.  Get To The Point: Summarization with Pointer-Generator Networks , 2017, ACL.

[15]  Dragomir R. Radev,et al.  Using Citations to Generate surveys of Scientific Paradigms , 2009, NAACL.

[16]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[17]  Dragomir R. Radev,et al.  Scientific Paper Summarization Using Citation Summary Networks , 2008, COLING.

[18]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[19]  Evangelos E. Milios,et al.  Multi-document summarization of scientific corpora , 2011, SAC.

[20]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[21]  Phyllis B. Baxendale,et al.  Machine-Made Index for Technical Literature - An Experiment , 1958, IBM J. Res. Dev..

[22]  ChengXiang Zhai,et al.  Generating Impact-Based Summaries for Scientific Literature , 2008, ACL.

[23]  Dain Kaplan,et al.  Automatic Extraction of Citation Contexts for Research Paper Summarization: A Coreference-chain based Approach , 2009 .

[24]  Hwee Tou Ng,et al.  A Generative Model for Parsing Natural Language to Meaning Representations , 2008, EMNLP.

[25]  Hai Zhuge,et al.  Automatic generation of related work through summarizing citations , 2019, Concurr. Comput. Pract. Exp..

[26]  Min-Yen Kan,et al.  Overview of the CL-SciSumm 2016 Shared Task , 2016, BIRNDL@JCDL.

[27]  Enrique Herrera-Viedma,et al.  A New Approach for Implicit Citation Extraction , 2018, IDEAL.