A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces
暂无分享,去创建一个
Robert Michael Kirby | Grady B. Wright | Varun Shankar | Aaron L. Fogelson | G. Wright | A. Fogelson | R. Kirby | Varun Shankar
[1] Cécile Piret,et al. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..
[2] Quoc Thong Le Gia,et al. Approximation of parabolic PDEs on spheres using spherical basis functions , 2005, Adv. Comput. Math..
[3] Robert Michael Kirby,et al. A radial basis function (RBF) finite difference method for the simulation of reaction–diffusion equations on stationary platelets within the augmented forcing method , 2013, ArXiv.
[4] Michael M. Kazhdan,et al. Poisson surface reconstruction , 2006, SGP '06.
[5] Elisabeth Larsson,et al. Stable Computation of Differentiation Matrices and Scattered Node Stencils Based on Gaussian Radial Basis Functions , 2013, SIAM J. Sci. Comput..
[6] Natasha Flyer,et al. Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..
[7] Bengt Fornberg,et al. Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..
[8] Grady B. Wright,et al. A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.
[9] R A Barrio,et al. Turing patterns on a sphere. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] Y. Sanyasiraju,et al. Local RBF‐FD solutions for steady convection–diffusion problems , 2007 .
[11] Oleg Davydov,et al. Adaptive meshless centres and RBF stencils for Poisson equation , 2011, J. Comput. Phys..
[12] Bengt Fornberg,et al. Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..
[13] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[14] R. Schaback. Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .
[15] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[16] P. Frederickson,et al. Icosahedral Discretization of the Two-Sphere , 1985 .
[17] Bengt Fornberg,et al. Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..
[18] Donna A. Calhoun,et al. A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes , 2009, SIAM J. Sci. Comput..
[19] Manuel Kindelan,et al. RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..
[20] B. Fornberg,et al. Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .
[21] A. I. Tolstykh,et al. On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .
[22] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[23] Paolo Cignoni,et al. MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.
[24] Michael J. McCourt,et al. Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..
[25] Grady B. Wright,et al. Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates , 2010, SIAM J. Numer. Anal..
[26] Erik Lehto,et al. A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..
[27] T. Driscoll,et al. Observations on the behavior of radial basis function approximations near boundaries , 2002 .
[28] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[29] C. Shu,et al. Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .
[30] Robert Michael Kirby,et al. A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method , 2012, Applied numerical mathematics : transactions of IMACS.
[31] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[32] David Stevens,et al. The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems , 2009, J. Comput. Phys..
[33] Colin B. Macdonald,et al. The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..
[34] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[35] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[36] Natasha Flyer,et al. A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[37] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[38] Thomas C. Cecil,et al. Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions , 2004 .
[39] Alan George,et al. Computer Solution of Large Sparse Positive Definite , 1981 .