A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces

In this paper, we present a method based on radial basis function (RBF)-generated finite differences (FD) for numerically solving diffusion and reaction–diffusion equations (PDEs) on closed surfaces embedded in $${\mathbb {R}}^d$$Rd. Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.

[1]  Cécile Piret,et al.  The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..

[2]  Quoc Thong Le Gia,et al.  Approximation of parabolic PDEs on spheres using spherical basis functions , 2005, Adv. Comput. Math..

[3]  Robert Michael Kirby,et al.  A radial basis function (RBF) finite difference method for the simulation of reaction–diffusion equations on stationary platelets within the augmented forcing method , 2013, ArXiv.

[4]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[5]  Elisabeth Larsson,et al.  Stable Computation of Differentiation Matrices and Scattered Node Stencils Based on Gaussian Radial Basis Functions , 2013, SIAM J. Sci. Comput..

[6]  Natasha Flyer,et al.  Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..

[7]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[8]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.

[9]  R A Barrio,et al.  Turing patterns on a sphere. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Y. Sanyasiraju,et al.  Local RBF‐FD solutions for steady convection–diffusion problems , 2007 .

[11]  Oleg Davydov,et al.  Adaptive meshless centres and RBF stencils for Poisson equation , 2011, J. Comput. Phys..

[12]  Bengt Fornberg,et al.  Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..

[13]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[14]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[15]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[16]  P. Frederickson,et al.  Icosahedral Discretization of the Two-Sphere , 1985 .

[17]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[18]  Donna A. Calhoun,et al.  A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes , 2009, SIAM J. Sci. Comput..

[19]  Manuel Kindelan,et al.  RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..

[20]  B. Fornberg,et al.  Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .

[21]  A. I. Tolstykh,et al.  On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .

[22]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[23]  Paolo Cignoni,et al.  MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.

[24]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[25]  Grady B. Wright,et al.  Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates , 2010, SIAM J. Numer. Anal..

[26]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[27]  T. Driscoll,et al.  Observations on the behavior of radial basis function approximations near boundaries , 2002 .

[28]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[29]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[30]  Robert Michael Kirby,et al.  A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method , 2012, Applied numerical mathematics : transactions of IMACS.

[31]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[32]  David Stevens,et al.  The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems , 2009, J. Comput. Phys..

[33]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[34]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[35]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[36]  Natasha Flyer,et al.  A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[38]  Thomas C. Cecil,et al.  Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions , 2004 .

[39]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .