Automatic Prediction of High-Resolution Daily Rainfall Fields for Multiple Extents: The Potential of Operational Radar

This study investigates the added value of operational radar with respect to rain gauges in obtaining high-resolution daily rainfall fields as required in distributed hydrological modeling. To this end data from the Netherlands operational national rain gauge network (330 gauges nationwide) is combined with an experimental network (30 gauges within 225 km 2 ). Based on 74 selected rainfall events (March–October 2004) the spatial variability of daily rainfall is investigated at three spatial extents: small (225 km 2 ), medium (10 000 km 2 ), and large (82 875 km 2 ). From this analysis it is shown that semivariograms show no clear dependence on season. Predictions of point rainfall are performed for all three extents using three different geostatistical methods: (i) ordinary kriging (OK; rain gauge data only), (ii) kriging with external drift (KED), and (iii) ordinary collocated cokriging (OCCK), with the latter two using both rain gauge data and range-corrected daily radar composites—a standard operational radar product from the Royal Netherlands Meteorological Institute (KNMI). The focus here is on automatic prediction. For the small extent, rain gauge data alone perform better than radar, while for larger extents with lower gauge densities, radar performs overall better than rain gauge data alone (OK). Methods using both radar and rain gauge data (KED and OCCK) prove to be more accurate than using either rain gauge data alone (OK) or radar, in particular, for larger extents. The added value of radar is positively related to the correlation between radar and rain gauge data. Using a pooled semivariogram is almost as good as using event-based semivariograms, which is convenient if the prediction is to be automated. An interesting result is that the pooled semivariograms perform better in terms of estimating the prediction error (kriging variance) especially for the small and medium extent, where the number of data points to estimate semivariograms is small and event-based semivariograms are rather unstable.

[1]  Marc F. P. Bierkens,et al.  Upscaling and downscaling methods for environmental research , 2000 .

[2]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[3]  Witold F. Krajewski,et al.  An analysis of small-scale rainfall variability in different climatic regimes , 2003 .

[4]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[5]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[6]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[7]  Matthias Steiner,et al.  Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation , 1999 .

[8]  Matthias Steiner,et al.  Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data , 1995 .

[9]  Guy Delrieu,et al.  Rain Measurement by Raingage-Radar Combination: A Geostatistical Approach , 1988 .

[10]  Witold F. Krajewski,et al.  Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 1. Design of experiments , 1990 .

[11]  Witold F. Krajewski,et al.  Cokriging radar‐rainfall and rain gage data , 1987 .

[12]  Iwan Holleman VPR Adjustment using a Dual CAPPI Technique , 2004 .

[13]  Jan van de Kassteele,et al.  A model for external drift kriging with uncertain covariates applied to air quality measurements and dispersion model output , 2006 .

[14]  V. Bell,et al.  The sensitivity of catchment runoff models to rainfall data at different spatial scales , 2000 .

[15]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[16]  A. Kruger,et al.  Experimental and numerical studies of small-scale rainfall measurements and variability , 1998 .

[17]  R. Minciardi,et al.  A geostatistical approach to multisensor rain field reconstruction and downscaling , 2001 .

[18]  P. Goovaerts Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall , 2000 .

[19]  Witold F. Krajewski,et al.  Stochastic interpolation of rainfall data from rain gages and radar using Cokriging: 2. Results , 1990 .

[20]  I. Orlanski A rational subdivision of scales for atmospheric processes , 1975 .

[21]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[22]  Witold F. Krajewski,et al.  Experimental and numerical studies of small-scale rainfall measurements and variability , 1998 .

[23]  V. Isham,et al.  Design of the HYREX raingauge network , 2000 .