A Characterization of Testable Hypergraph Properties

We provide a combinatorial characterization of all testable properties of k-graphs (i.e. k-uniform hypergraphs). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that satisfy P and those that are far from satisfying P. For the 2-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the k-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 3-graph setting.

[1]  Luca Trevisan,et al.  Three Theorems regarding Testing Graph Properties , 2001, Electron. Colloquium Comput. Complex..

[2]  László Lovász,et al.  Non-Deterministic Graph Property Testing , 2012, Combinatorics, Probability and Computing.

[3]  Terence Tao,et al.  Testability and repair of hereditary hypergraph properties , 2008, Random Struct. Algorithms.

[4]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[5]  Brendan Nagle,et al.  On random sampling in uniform hypergraphs , 2011, Random Struct. Algorithms.

[6]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[7]  Noga Alon,et al.  Removal Lemmas for Matrices , 2016, ArXiv.

[8]  Ronitt Rubinfeld,et al.  Non‐Abelian homomorphism testing, and distributions close to their self‐convolutions , 2008, Random Struct. Algorithms.

[9]  Ronitt Rubinfeld,et al.  Non-Abelian homomorphism testing, and distributions close to their self-convolutions , 2008 .

[10]  Noga Alon,et al.  Testing of Clustering , 2003, SIAM J. Discret. Math..

[11]  B. Szegedy,et al.  Testing properties of graphs and functions , 2008, 0803.1248.

[12]  Marek Karpinski,et al.  On the Complexity of Nondeterministically Testable Hypergraph Parameters , 2015, ArXiv.

[13]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Counting Lemmas , 2007, Combinatorics, Probability and Computing.

[14]  Miklos Santha,et al.  Efficient testing of groups , 2005, STOC '05.

[15]  László Lovász,et al.  Graph limits and parameter testing , 2006, STOC '06.

[16]  Noga Alon,et al.  Testing Boolean Function Isomorphism , 2010, APPROX-RANDOM.

[17]  Eldar Fischer,et al.  Testing versus estimation of graph properties , 2005, STOC '05.

[18]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.

[19]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[20]  Oded Schramm,et al.  Every minor-closed property of sparse graphs is testable , 2008, Electron. Colloquium Comput. Complex..

[21]  I. Benjamini,et al.  Every minor-closed property of sparse graphs is testable , 2008, Electron. Colloquium Comput. Complex..

[22]  Vojtech Rödl,et al.  Generalizations of the removal lemma , 2009, Comb..

[23]  Marek Karpinski,et al.  Explicit Bounds for Nondeterministically Testable Hypergraph Parameters , 2015, ArXiv.

[24]  Noga Alon,et al.  Easily Testable Graph Properties , 2015, Combinatorics, Probability and Computing.

[25]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[26]  Eldar Fischer The difficulty of testing for isomorphism against a graph that is given in advance , 2004, STOC '04.

[27]  Vojtech Rödl,et al.  Property testing in hypergraphs and the removal lemma , 2007, STOC '07.

[28]  Noga Alon,et al.  Testing satisfiability , 2002, SODA '02.

[29]  Yoshiharu Kohayakawa,et al.  Efficient Testing of Hypergraphs , 2002, ICALP.

[30]  Noga Alon,et al.  A Characterization of the (Natural) Graph Properties Testable with One-Sided Error , 2008, SIAM J. Comput..

[31]  Asaf Shapira,et al.  Deterministic vs non-deterministic graph property testing , 2013, Electron. Colloquium Comput. Complex..

[32]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[33]  Yoshiharu Kohayakawa,et al.  Efficient testing of hypergraphs: (Extended abstract) , 2002 .

[34]  Vojtech Rödl,et al.  The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..

[35]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[36]  János Pach,et al.  A Polynomial Regularity Lemma for Semialgebraic Hypergraphs and Its Applications in Geometry and Property Testing , 2015, SIAM J. Comput..

[37]  Noga Alon,et al.  Every monotone graph property is testable , 2005, STOC '05.

[38]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[39]  Vojtech Rödl,et al.  Every Monotone 3-Graph Property is Testable , 2007, SIAM J. Discret. Math..

[40]  Christian Sohler,et al.  Every property of hyperfinite graphs is testable , 2011, STOC '11.

[41]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[42]  Noga Alon,et al.  A combinatorial characterization of the testable graph properties: it's all about regularity , 2006, STOC '06.

[43]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[44]  Yoshiharu Kohayakawa,et al.  Hypergraphs, Quasi-randomness, and Conditions for Regularity , 2002, J. Comb. Theory, Ser. A.

[45]  G'abor Elek,et al.  A measure-theoretic approach to the theory of dense hypergraphs , 2008, 0810.4062.

[46]  Vojtech Rödl,et al.  Every Monotone 3-Graph Property is Testable , 2005, SIAM J. Discret. Math..

[47]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[48]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[49]  Noga Alon,et al.  Linear equations, arithmetic progressions and hypergraph property testing , 2005, SODA '05.