Regelungsentwurf für Windenergieanlagen

Zusammenfassung Moderne Windenergieanlagen sind komplexe mechatronische Systeme und bieten aus Sicht der Regelungstechnik eine Vielzahl von Möglichkeiten und Herausforderungen. Eine große Anzahl von Autoren hat sich deshalb in den letzten Jahren dem Entwurf von geeigneten Regelungssystemen für Windenergieanlagen gewidmet. Der vorliegende Überblicksbeitrag versucht, eine Anzahl von relevanten Arbeiten in einen übergreifenden Kontext einzuordnen, bezogen z. B. auf den Einsatz von Mehrgrößenreglern und die besondere Behandlung von periodischen Störsignalen. Darüber hinaus wird ein Ausblick auf zukünftige Entwicklungen wie schwimmende Windenergieanlagen oder Rotorblätter mit verteilten Aktuatoren gegeben. Abstract Modern wind turbines are complex mechatronic systems and provide various possibilities and challenges to the control engineer. A large number of authors has contributed to this field during the last years. This article tries to present and arrange a number of relevant publications in a larger context, e. g. multivariable control design and the handling of periodic disturbances. Additionally, an outlook to future developments like floating wind turbines and rotor blades with distributed actuators is given.

[1]  T. G. van Engelen Design model and load reduction assessment for multi-rotational mode individual pitch control (higher harmonics control) , 2006 .

[2]  C. Riboldi,et al.  Advanced control laws for variable-speed wind turbines and supporting enabling technologies , 2012 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  L.Y. Pao,et al.  Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture , 2006, IEEE Control Systems.

[5]  Alan Wright,et al.  Combined Feed-forward/Feedback Control of Wind Turbines to Reduce Blade Flap Bending Moments y , 2009 .

[6]  Lance Manuel,et al.  Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods , 2007 .

[7]  Rolf Isermann,et al.  Modellbasierte Überwachung und Fehlerdiagnose von kontinuierlichen technischen Prozessen , 2010, Autom..

[8]  Jakob Stoustrup,et al.  Robust and fault-tolerant linear parameter-varying control of wind turbines , 2011 .

[9]  Qi Zhang,et al.  Fault Detection and Isolation of the Wind Turbine Benchmark: an Estimation-based Approach , 2011 .

[10]  Pierre Borne,et al.  Switching LPV Controllers for a Variable Speed Pitch Regulated Wind Turbine , 2006 .

[11]  Mac Gaunaa,et al.  Load alleviation on wind turbine blades using variable airfoil geometry , 2006 .

[12]  Michel Verhaegen,et al.  Closed-loop system identification of wind turbines in the presence of periodic effects , 2010 .

[13]  Niels Kjølstad Poulsen,et al.  Nonlinear Model Predictive Control of a Simplified Wind Turbine , 2011 .

[14]  G.A.M. van Kuik,et al.  Review of state of the art in smart rotor control research for wind turbines , 2010 .

[15]  William Leithead,et al.  Analysis of tower/blade interaction in the cancellation of the tower fore-aft mode via control , 2004 .

[16]  Abdul Qayyum Khan,et al.  Observer-based FDI Schemes for Wind Turbine Benchmark , 2011 .

[17]  A. D. Wright,et al.  Modern Control Design for Flexible Wind Turbines , 2004 .

[18]  Afef Fekih,et al.  Fault-Tolerant Control of Wind Turbine Systems - A Review , 2011, 2011 IEEE Green Technologies Conference (IEEE-Green).

[19]  Mark J. Balas,et al.  Disturbance Tracking Control Theory with Application to Horizontal Axis Wind Turbines , 1998 .

[20]  J. Jonkman Influence of Control on the Pitch Damping of a Floating Wind Turbine , 2008 .

[21]  Sridhar Kota,et al.  The Impact of Active Aerodynamic Load Control on Fatigue and Energy Capture at Low Wind Speed Sites. , 2009 .

[22]  David Schlipf,et al.  LIDAR assisted collective pitch control , 2011 .

[23]  Mark J. Balas,et al.  Periodic Disturbance Accommodating Control for Blade Load Mitigation in Wind Turbines , 2003 .

[24]  Michel Verhaegen,et al.  On the proof of concept of a ‘Smart’ wind turbine rotor blade for load alleviation , 2008 .

[25]  David G. Wilson,et al.  Active Aerodynamic Blade Distributed Flap Control Design Procedure for Load Reduction on the UpWind 5MW Wind Turbine , 2010 .

[26]  Susan A. Frost,et al.  Direct adaptive control of a utility‐scale wind turbine for speed regulation , 2009 .

[27]  J. Freeman,et al.  An investigation of variable speed horizontal-axis wind turbines using direct model-reference adaptive control , 1999 .

[28]  I. Houtzager,et al.  Towards Data-Driven Control for Modern Wind Turbines , 2011 .

[29]  Stoyan Kanev,et al.  Exploring the Limits in Individual Pitch Control , 2009 .

[30]  G.A.M. Van Kuik,et al.  Aeroelastic Modelling and Comparison of Advanced Active Flap Control Concepts for Load Reduction on the Upwind 5MW Wind Turbine , 2009 .

[31]  David G. Wilson,et al.  ACTIVE AERODYNAMIC BLADE CONTROL DESIGN FOR LOAD REDUCTION ON LARGE WIND TURBINES , 2009 .

[32]  Jakob Stoustrup,et al.  Rate bounded linear parameter varying control of a wind turbine in full load operation , 2008 .

[33]  William Leithead,et al.  GLOBAL GAIN-SCHEDULING CONTROL FOR VARIABLE SPEED WIND TURBINES , 1997 .

[34]  Palle Andersen,et al.  Operational Modal Analysis of a Wind Turbine Mainframe using Crystal Clear SSI , 2011 .

[35]  Yukio Tamura,et al.  A Frequency-Spatial Domain Decomposition ( FSDD ) Technique for Operational Modal Analysis , 2005 .

[36]  Maurice Goursat,et al.  Crystal Clear SSI for Operational Modal Analysis of Aerospace Vehicles , 2011 .

[37]  Karl A. Stol,et al.  Testing controls to mitigate fatigue loads in the controls Advanced Research Turbine , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[38]  Thomas Buhl,et al.  Model Predictive Control of Trailing Edge Flaps on a wind turbine blade , 2011, Proceedings of the 2011 American Control Conference.

[39]  Karl Stol,et al.  Disturbance Tracking and Blade Load Control of Wind Turbines in Variable-Speed Operation , 2003 .

[40]  G. Bir Multiblade Coordinate Transformation and Its Application to Wind Turbine Analysis: Preprint , 2008 .

[41]  Yingning Qiu,et al.  Wind turbine condition monitoring: technical and commercial challenges , 2014 .

[42]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[43]  Karl Stol,et al.  A Comparison of Multi-Blade Coordinate Transformation and Direct Periodic Techniques for Wind Turbine Control Design , 2009 .

[44]  Peter Fogh Odgaard,et al.  Repetitive model predictive approach to individual pitch control of wind turbines , 2011, IEEE Conference on Decision and Control and European Control Conference.

[45]  M. Iribas-Latour,et al.  Identification in closed‐loop operation of models for collective pitch robust controller design , 2013 .

[46]  Torben J. Larsen,et al.  A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine , 2007 .

[47]  P. Andersen,et al.  Understanding Stochastic Subspace Identification , 2006 .

[48]  Vicenç Puig,et al.  Fault Detection and Isolation of a Real Wind Turbine using LPV Observers , 2011 .

[49]  C. P. van Dam,et al.  Computational Investigation of Finite Width Microtabs for Aerodynamic Load Control , 2005 .

[50]  Boris Fischer,et al.  Reducing rotor speed variations of floating wind turbines by compensation of non-minimum phase zeros , 2013 .

[51]  Alan Wright,et al.  Combining Standard Feedback Controllers with Feedforward Blade Pitch Control for Load Mitigation in Wind Turbines , 2010 .

[52]  Boris Jasniewicz,et al.  Wind turbine modelling and identification for contr ol system applications , 2011 .

[53]  Stephen P. Boyd,et al.  Load reduction of wind turbines using receding horizon control , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[54]  W. Leithead,et al.  Control of variable speed wind turbines: Design task , 2000 .