Systematic study of (TiZr)xNby(TaMo)z medium entropy alloys for biomedical implants

[1]  J. Qiao,et al.  Excellent room-temperature tensile ductility in as-cast Ti37V15Nb22Hf23W3 refractory high entropy alloys , 2022, Intermetallics.

[2]  P. Capellato,et al.  A Review of Biomaterials Based on High-Entropy Alloys , 2022, Metals.

[3]  Y. Nian,et al.  Strengthening mechanisms in high entropy alloys: A review , 2022, Materials Today Communications.

[4]  Pei-lei Zhang,et al.  Bio-high entropy alloys: Progress, challenges, and opportunities , 2022, Frontiers in Bioengineering and Biotechnology.

[5]  Saad Jawaid Khan,et al.  Effect of Alloying Elements on the Compressive Mechanical Properties of Biomedical Titanium Alloys: A Systematic Review , 2022, ACS omega.

[6]  S. El-Hadad High Entropy Alloys: The Materials of Future , 2022, International Journal of Materials Technology and Innovation.

[7]  Shuyuan Zhang,et al.  Mediation of mechanically adapted TiCu/TiCuN/CFR-PEEK implants in vascular regeneration to promote bone repair in vitro and in vivo , 2022, Journal of orthopaedic translation.

[8]  Ashutosh Kumar Singh,et al.  A comprehensive review on metallic implant biomaterials and their subtractive manufacturing , 2022, The International Journal of Advanced Manufacturing Technology.

[9]  Dexue Liu,et al.  Research on suitable strength, elastic modulus and abrasion resistance of Ti–Zr–Nb medium entropy alloys (MEAs) for implant adaptation , 2022, Intermetallics.

[10]  X. Loh,et al.  Biomaterials by design: Harnessing data for future development , 2021, Materials today. Bio.

[11]  D. Oldridge,et al.  Overview of methods for enhancing bone regeneration in distraction osteogenesis: Potential roles of biometals , 2021, Journal of orthopaedic translation.

[12]  H. Singh,et al.  A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. , 2021, Materials science & engineering. C, Materials for biological applications.

[13]  N. Tsuji,et al.  Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy , 2020 .

[14]  Kailun Wu,et al.  Which implant is better for beginners to learn to treat geriatric intertrochanteric femur fractures: A randomised controlled trial of surgeons, metalwork, and patients , 2019, Journal of orthopaedic translation.

[15]  Murillo Romero da Silva,et al.  Microstructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applications , 2019, Journal of Materials Research and Technology.

[16]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[17]  Lai‐Chang Zhang,et al.  A Review on Biomedical Titanium Alloys: Recent Progress and Prospect , 2019, Advanced Engineering Materials.

[18]  K. An,et al.  Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys , 2019, Materials Research Letters.

[19]  N. Eliaz Corrosion of Metallic Biomaterials: A Review , 2019, Materials.

[20]  J. Zou,et al.  A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA) , 2018, Intermetallics.

[21]  B. Tang,et al.  Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression , 2018 .

[22]  M. Janeček,et al.  Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. , 2017, Journal of the mechanical behavior of biomedical materials.

[23]  J. Qiao,et al.  Mechanical properties of refractory high-entropy alloys: Experiments and modeling , 2017 .

[24]  C. Dong,et al.  Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus , 2017 .

[25]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[26]  Shicheng Wei,et al.  Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus. , 2016, Materials science & engineering. C, Materials for biological applications.

[27]  I. Guillot,et al.  On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy , 2015 .

[28]  Jingjie Guo,et al.  Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy , 2015 .

[29]  Jien-Wei Yeh,et al.  Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys , 2015 .

[30]  Tao Wang,et al.  A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties , 2014 .

[31]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[32]  C. Liu,et al.  More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase , 2013 .

[33]  Masami Okamoto,et al.  Synthetic biopolymer nanocomposites for tissue engineering scaffolds , 2013 .

[34]  Xianlong Zhang,et al.  The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young's modulus. , 2013, International journal of molecular medicine.

[35]  F. Prima,et al.  Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy , 2013 .

[36]  James C. Williams,et al.  Perspectives on Titanium Science and Technology , 2013 .

[37]  M. Niinomi,et al.  Development of new metallic alloys for biomedical applications. , 2012, Acta biomaterialia.

[38]  Gianluca Ciardelli,et al.  Collagen for bone tissue regeneration. , 2012, Acta biomaterialia.

[39]  L. You,et al.  A study of low Young′s modulus Ti–Nb–Zr alloys using d electrons alloy theory , 2012 .

[40]  Yong Zhang,et al.  Prediction of high-entropy stabilized solid-solution in multi-component alloys , 2012 .

[41]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[42]  E. Itoi,et al.  The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus. , 2011, Acta biomaterialia.

[43]  F. Prima,et al.  Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy , 2010 .

[44]  L. Zhao,et al.  Characterization of nano-layered multilayer coatings using modified Bragg law , 2008 .

[45]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[46]  R. Caram,et al.  Development of Ti-Mo alloys for biomedical applications: Microstructure and electrochemical characterization , 2007 .

[47]  R. Yang,et al.  Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. , 2007, Acta biomaterialia.

[48]  M. Morinaga,et al.  General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters , 2006 .

[49]  M. Niinomi,et al.  Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications , 2004 .

[50]  C. Ju,et al.  Structure and properties of cast binary Ti-Mo alloys. , 1999, Biomaterials.

[51]  Mitsuo Niinomi,et al.  Mechanical properties of biomedical titanium alloys , 1998 .

[52]  R. Labusch,et al.  Statistische theorien der mischkristallhärtung , 1972 .

[53]  R. Taggart,et al.  A model for the prediction of lattice parameters of solid solutions , 1971 .

[54]  G. Kostorz Mischkristallhärtung von Niob , 1968 .

[55]  R. Fleischer,et al.  Substitutional solution hardening , 1963 .

[56]  J. C. Slater Atomic Shielding Constants , 1930 .

[57]  R. Mishra,et al.  High Entropy Materials: Processing, Properties, and Applications , 2022, Materials Horizons: From Nature to Nanomaterials.

[58]  S. Semboshi,et al.  Low Young's modulus of cold groove-rolled β Ti–Nb–Sn alloys for orthopedic applications , 2021 .

[59]  C. Maniatopoulos,et al.  An improved method for preparing histological sections of metallic implants. , 1986, The International journal of oral & maxillofacial implants.