Metallized Porous GaP Templates for Electronic and Photonic Applications

[1]  D. Gamelin,et al.  Dopant-carrier magnetic exchange coupling in colloidal inverted core/shell semiconductor nanocrystals. , 2009, Nano letters.

[2]  A. Koster,et al.  A schottky barrier junction based on nanometer‐scale interpenetrating GaP/Gold networks , 1997 .

[3]  Zheng Zheng,et al.  Dielectrics Covered Metal Nanowires and Nanotubes for Low-Loss Guiding of Subwavelength Plasmonic Modes , 2013, Journal of Lightwave Technology.

[4]  Yi Cui,et al.  Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires , 2013, Nature Communications.

[5]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[6]  Shouyuan Shi,et al.  Experimental demonstration of negative refraction imaging in both amplitude and phase. , 2005, Optics express.

[7]  D. A. Dinh,et al.  Silver Nanowires: A Promising Transparent Conducting Electrode Material for Optoelectronic and Electronic Applications , 2013 .

[8]  Ion Tiginyanu,et al.  Self-organized growth of single crystals of nanopores , 2003 .

[9]  A. Brolo,et al.  Periodic metallic nanostructures as plasmonic chemical sensors. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[10]  S. Ko,et al.  Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. , 2012, Nanoscale.

[11]  M. Yin,et al.  Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals. , 2008, Nature materials.

[12]  H. Hartnagel,et al.  Correlation between morphology and cathodoluminescence in porous GaP , 2001 .

[13]  Michael Scalora,et al.  Negative refraction and subwavelength imaging using transparent metal-dielectric stacks , 2006 .

[14]  Michael Scalora,et al.  Energy considerations for a superlens based on metal/dielectric multilayers. , 2008, Optics express.

[15]  Ion Tiginyanu,et al.  Pores in III–V Semiconductors , 2003 .

[16]  Image reconstruction using a photonic crystal based flat lens operating at 1.55 μm. , 2010, Applied optics.

[17]  Ion Tiginyanu,et al.  Ordered arrays of metal nanotubes in semiconductor envelope , 2008 .

[18]  G Hrkac,et al.  Nanowire spintronics for storage class memories and logic , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Photonic crystals as host material for a new generation of microwave components , 2006 .

[20]  Philippe Boucaud,et al.  Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations. , 2008, Optics express.

[21]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[22]  Dispersion Engineering for Multifunctional Photonic Crystal BasedNanophotonic Devices at Infrared Wavelengths , 2013 .

[23]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[24]  Zhao-Qing Zhang,et al.  Multiple-scattering approach to finite-sized photonic band-gap materials , 1998 .

[25]  V. V. Sergentu,et al.  Quasi-Ordered Networks of Metal Nanotubes Embedded in Semiconductor Matrices for Photonic Applications , 2011 .

[26]  Shaohui Xu,et al.  Optical properties of Ni and Cu nanowire arrays and Ni/Cu superlattice nanowire arrays , 2012, Nanoscale Research Letters.

[27]  P. Schmuki,et al.  Prediction of negative index material lenses based on metallo‐dielectric nanotubes , 2008 .