Markov frameworks and stock market decision making

[1]  J. Medhi,et al.  Stochastic Processes , 1982 .

[2]  Babushri Srinivas Kedukodi,et al.  Interval valued L-fuzzy prime ideals, triangular norms and partially ordered groups , 2019, Soft Comput..

[3]  Shivani Singh,et al.  A fuzzy similarity-based rough set approach for attribute selection in set-valued information systems , 2019, Soft Computing.

[4]  Rupak Bhattacharyya,et al.  Stock portfolio selection using Dempster-Shafer evidence theory , 2016, J. King Saud Univ. Comput. Inf. Sci..

[5]  Victor Chang,et al.  An innovative neural network approach for stock market prediction , 2018, The Journal of Supercomputing.

[6]  Vahid Majazi Dalfard,et al.  Efficiency appraisal and ranking of decision-making units using data envelopment analysis in fuzzy environment: a case study of Tehran stock exchange , 2012, Neural Computing and Applications.

[7]  Bijan Davvaz,et al.  Roughness in rings , 2004, Inf. Sci..

[8]  B. S. Kedukodi,et al.  C-Prime Fuzzy Ideals of Nearrings , 2007 .

[9]  Mei-Chih Chen,et al.  Constructing a dynamic stock portfolio decision-making assistance model: using the Taiwan 50 Index constituents as an example , 2007, Soft Comput..

[10]  Babushri Srinivas Kedukodi,et al.  Equiprime, 3-prime and c-prime fuzzy ideals of nearrings , 2009, Soft Comput..

[11]  B. S. Kedukodi,et al.  Interval valued L-fuzzy cosets of nearrings and isomorphism theorems , 2016 .

[12]  Muhammad Hanif,et al.  A multivariate regression-cum-exponential estimator for population variance vector in two phase sampling , 2017 .

[13]  B. S. Kedukodi,et al.  Implications on a Lattice , 2016 .

[14]  Tae Yoon Kim,et al.  Using rough set to support investment strategies of real-time trading in futures market , 2010, Applied Intelligence.

[15]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[16]  K. C. Chan Market share modelling and forecasting using Markov chains and alternative models , 2015 .

[17]  Madjid Tavana,et al.  A chance-constrained portfolio selection model with random-rough variables , 2017, Neural Computing and Applications.

[18]  Kavitha Koppula,et al.  Markov chains and rough sets , 2018, Soft Comput..

[19]  Ivana P. Markovic,et al.  Stock market trend prediction using AHP and weighted kernel LS-SVM , 2017, Soft Comput..

[20]  Bijan Davvaz,et al.  Roughness based on fuzzy ideals , 2006, Inf. Sci..

[21]  Prasenjit Mandal,et al.  Fuzzy multi-granulation decision-theoretic rough sets based on fuzzy preference relation , 2018, Soft Computing.

[22]  Muhammad Akram,et al.  Intuitionistic fuzzy left k-ideals of semirings , 2008, Soft Comput..

[23]  Ewa Orlowska,et al.  Logic of nondeterministic information , 1985, Stud Logica.

[24]  Babushri Srinivas Kedukodi,et al.  Reference points and roughness , 2010, Inf. Sci..

[25]  Manju Khari,et al.  Neutrosophic soft set decision making for stock trending analysis , 2018, Evol. Syst..

[26]  Babushri Srinivas Kedukodi,et al.  Interval valued L-fuzzy ideals based on t-norms and t-conorms , 2015, J. Intell. Fuzzy Syst..

[27]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[28]  B. S. Kedukodi,et al.  Graph of a Nearring with Respect to an Ideal , 2010 .

[29]  Xiong Xiong,et al.  Forecasting stock volatility process using improved least square support vector machine approach , 2019, Soft Comput..

[30]  Tak Kuen Siu,et al.  Markov Chains: Models, Algorithms and Applications , 2006 .

[31]  Davide Ciucci,et al.  A Unifying Abstract Approach for Rough Models , 2008, RSKT.

[32]  Bingzhen Sun,et al.  Multigranulation vague rough set over two universes and its application to group decision making , 2018, Soft Comput..

[33]  D. Choji,et al.  Markov Chain Model Application on Share Price Movement in Stock Market , 2013 .

[34]  Zdzislaw Pawlak,et al.  Rough sets and intelligent data analysis , 2002, Inf. Sci..