Globally convergent evolution strategies

In this paper we show how to modify a large class of evolution strategies (ES’s) for unconstrained optimization to rigorously achieve a form of global convergence, meaning convergence to stationary points independently of the starting point. The type of ES under consideration recombines the parent points by means of a weighted sum, around which the offspring points are computed by random generation. One relevant instance of such an ES is covariance matrix adaptation ES (CMA-ES). The modifications consist essentially of the reduction of the size of the steps whenever a sufficient decrease condition on the function values is not verified. When such a condition is satisfied, the step size can be reset to the step size maintained by the ES’s themselves, as long as this latter one is sufficiently large. We suggest a number of ways of imposing sufficient decrease for which global convergence holds under reasonable assumptions (in particular density of certain limit directions in the unit sphere). Given a limited budget of function evaluations, our numerical experiments have shown that the modified CMA-ES is capable of further progress in function values. Moreover, we have observed that such an improvement in efficiency comes without weakening significantly the performance of the underlying method in the presence of several local minimizers.

[1]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[2]  Jens Jägersküpper,et al.  How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms , 2006, Theor. Comput. Sci..

[3]  Luís N. Vicente,et al.  Analysis of direct searches for discontinuous functions , 2012, Math. Program..

[4]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[5]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[6]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[7]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[8]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[9]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[10]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[11]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[12]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[13]  Jens Jägersküpper,et al.  Probabilistic runtime analysis of (1 +, λ),ES using isotropic mutations , 2006, GECCO '06.

[14]  Garrison W. Greenwood,et al.  Convergence in Evolutionary Programs with Self-Adaptation , 2001, Evolutionary Computation.

[15]  Humberto Rocha,et al.  Incorporating minimum Frobenius norm models in direct search , 2010, Comput. Optim. Appl..

[16]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[17]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[18]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[19]  Christof Vömel,et al.  ScaLAPACK's MRRR algorithm , 2010, TOMS.

[20]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[21]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[22]  Giacomo Indiveri,et al.  Handbook of Computational Intelligence , 2015 .

[23]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[24]  Anne Auger,et al.  Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..

[25]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[26]  I. Coope,et al.  Frame Based Methods for Unconstrained Optimization , 2000 .

[27]  Todd S. Munson,et al.  Optimality Measures for Performance Profiles , 2006, SIAM J. Optim..

[28]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[29]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[30]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.