Europium doped Gd2O3 and GdBO3 scintillators for thermal neutron detection

[1]  R. Froeschl,et al.  New Capabilities of the FLUKA Multi-Purpose Code , 2022, Frontiers in Physics.

[2]  R. Khan,et al.  Neutron activation of gadolinium for ion therapy: a Monte Carlo study of charged particle beams , 2020, Scientific Reports.

[3]  V. Kadilin,et al.  Use of Neutron Scintillation Detectors as a Substitute for Helium-3 Counters in Radiation Monitors , 2019, Atomic Energy.

[4]  D. Enseling,et al.  Luminescence and luminescence quenching of efficient GdB 5 O 9 :Eu 3+ red phosphors , 2017 .

[5]  Viviana Fernandez,et al.  Rare-earth elements market: A historical and financial perspective , 2017 .

[6]  P. W. Chin,et al.  Overview of the FLUKA code , 2014, ICS 2014.

[7]  Sara A. Pozzi,et al.  Testing on novel neutron detectors as alternative to 3He for security applications , 2012 .

[8]  P. Kandlakunta,et al.  Gamma-ray rejection, or detection, with gadolinium as a converter. , 2012, Radiation protection dosimetry.

[9]  F. McNeill,et al.  Characteristic X ray emission in gadolinium following neutron capture as an improved method of in vivo measurement: A comparison between feasibility experiment and Monte–Carlo simulation , 2012 .

[10]  Edward R. Siciliano,et al.  Neutron detection alternatives to 3He for national security applications , 2010 .

[11]  J. I. Brand,et al.  The K-shell Auger electron spectrum of gadolinium obtained using neutron capture in a solid state device , 2010 .

[12]  C. Eijk Inorganic scintillators for thermal neutron detection , 2004 .

[13]  X. Jing,et al.  Control of Y 2 O 3:Eu Spherical Particle Phosphor Size, Assembly Properties, and Performance for FED and HDTV , 1999 .

[14]  Vlachoudis FLAIR: A POWERFUL BUT USER FRIENDLY GRAPHICAL INTERFACE FOR FLUKA , 2009 .