Crystal Structure of an LSD-Bound Human Serotonin Receptor

[1]  Vadim Cherezov,et al.  Serial Femtosecond Crystallography of G Protein-Coupled Receptors. , 2018, Annual review of biophysics.

[2]  Henry Lin,et al.  Structure-based discovery of opioid analgesics with reduced side effects , 2016, Nature.

[3]  A. Leslie,et al.  Structure of the adenosine A2A receptor bound to an engineered G protein , 2016, Nature.

[4]  P. Sexton,et al.  The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism , 2016, Cell.

[5]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[6]  S. Hashioka,et al.  PT596. The comparison with galantamine and donepezil on Alzheimer’s Disease patients and its relationship with cerebral blood flow , 2016, International Journal of Neuropsychopharmacology.

[7]  Kevin Murphy,et al.  Neural correlates of the LSD experience revealed by multimodal neuroimaging , 2016, Proceedings of the National Academy of Sciences.

[8]  David E. Nichols,et al.  Psychedelics , 2016, Pharmacological Reviews.

[9]  Matthew W. Johnson,et al.  Classic hallucinogens in the treatment of addictions , 2016, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[10]  Joanna L. Sharman,et al.  The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands , 2015, Nucleic Acids Res..

[11]  Xin Chen,et al.  Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65 , 2015, Nature.

[12]  F. Vollenweider,et al.  Acute Effects of Lysergic Acid Diethylamide in Healthy Subjects , 2015, Biological Psychiatry.

[13]  M. Liechti,et al.  Pharmacokinetics and Concentration-Effect Relationship of Oral LSD in Humans , 2015, The international journal of neuropsychopharmacology.

[14]  A. Roitberg,et al.  Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. , 2015, Journal of chemical theory and computation.

[15]  Maria F. Sassano,et al.  PRESTO-TANGO: an open-source resource for interrogation of the druggable human GPCR-ome , 2015, Nature Structural &Molecular Biology.

[16]  T. Passie,et al.  LSD-assisted psychotherapy for anxiety associated with a life-threatening disease: A qualitative study of acute and sustained subjective effects , 2015, Journal of psychopharmacology.

[17]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[18]  R. Dror,et al.  Insights into the role of Asp79(2.50) in β2 adrenergic receptor activation from molecular dynamics simulations. , 2014, Biochemistry.

[19]  L. Mahan,et al.  Correction to “The Kinetics of Competitive Radioligand Binding Predicted by the Law of Mass Action” , 2014, Molecular Pharmacology.

[20]  George Khelashvili,et al.  A Functional Selectivity Mechanism at the Serotonin-2A GPCR Involves Ligand-Dependent Conformations of Intracellular Loop 2 , 2014, Journal of the American Chemical Society.

[21]  Nick V Grishin,et al.  PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. , 2014, Methods in molecular biology.

[22]  Brian K. Shoichet,et al.  Ligand Pose and Orientational Sampling in Molecular Docking , 2013, PloS one.

[23]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..

[24]  Daniel R Roe,et al.  PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. , 2013, Journal of chemical theory and computation.

[25]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[26]  Hualiang Jiang,et al.  Structural Basis for Molecular Recognition at Serotonin Receptors , 2013, Science.

[27]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[28]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[29]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[30]  Alexander D. MacKerell,et al.  Inclusion of many-body effects in the additive CHARMM protein CMAP potential results in enhanced cooperativity of α-helix and β-hairpin formation. , 2012, Biophysical journal.

[31]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[32]  Joshua M. Kunken,et al.  Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. , 2012, Structure.

[33]  Arthur Christopoulos,et al.  A simple method for quantifying functional selectivity and agonist bias. , 2012, ACS chemical neuroscience.

[34]  Maria F. Sassano,et al.  Discovery of β-Arrestin–Biased Dopamine D2 Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy , 2011, Proceedings of the National Academy of Sciences.

[35]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[36]  Ruben Abagyan,et al.  Structure of the human histamine H1 receptor complex with doxepin , 2011, Nature.

[37]  Cheng Zhang,et al.  Structure and Function of an Irreversible Agonist-β2 Adrenoceptor complex , 2010, Nature.

[38]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[39]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[40]  Brian K. Shoichet,et al.  Rapid Context-Dependent Ligand Desolvation in Molecular Docking , 2010, J. Chem. Inf. Model..

[41]  R. Abagyan,et al.  Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. , 2010, Journal of the American Chemical Society.

[42]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[43]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[44]  Benjamin A. Ellingson,et al.  Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database , 2010, J. Chem. Inf. Model..

[45]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[46]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[47]  Bryan L. Roth,et al.  Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine2B Receptor Agonists: Implications for Drug Safety Assessment , 2009, Molecular Pharmacology.

[48]  B. Roth,et al.  The expanded biology of serotonin. , 2009, Annual review of medicine.

[49]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[50]  H. Emrich,et al.  The Pharmacology of Lysergic Acid Diethylamide: A Review , 2008, CNS neuroscience & therapeutics.

[51]  R. Gainetdinov,et al.  Antagonism of dopamine D2 receptor/β-arrestin 2 interaction is a common property of clinically effective antipsychotics , 2008, Proceedings of the National Academy of Sciences.

[52]  R. Stevens,et al.  Stabilization of the human beta2-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. , 2008, Journal of molecular biology.

[53]  R. Stevens,et al.  Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. , 2007, Protein expression and purification.

[54]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[55]  J. Violin,et al.  β-Arrestin-biased ligands at seven-transmembrane receptors , 2007 .

[56]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[57]  R. Copeland,et al.  Drug–target residence time and its implications for lead optimization , 2007, Nature Reviews Drug Discovery.

[58]  Stuart C. Sealfon,et al.  Hallucinogens Recruit Specific Cortical 5-HT2A Receptor-Mediated Signaling Pathways to Affect Behavior , 2007, Neuron.

[59]  Arthur Christopoulos,et al.  Functional Selectivity and Classical Concepts of Quantitative Pharmacology , 2007, Journal of Pharmacology and Experimental Therapeutics.

[60]  J. Violin,et al.  Beta-arrestin-biased ligands at seven-transmembrane receptors. , 2007, Trends in pharmacological sciences.

[61]  Wladek Minor,et al.  HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes. , 2006, Acta crystallographica. Section D, Biological crystallography.

[62]  Jie Liang,et al.  CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues , 2006, Nucleic Acids Res..

[63]  H. Pope,et al.  Response of cluster headache to psilocybin and LSD , 2006, Neurology.

[64]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[65]  T. K. Harden,et al.  Quantification of isozyme-specific activation of phospholipase C-beta2 by Rac GTPases and phospholipase C-epsilon by Rho GTPases in an intact cell assay system. , 2006, Methods in enzymology.

[66]  J. Pelletier,et al.  High-Throughput Screening of G Protein-Coupled Receptor Antagonists Using a Bioluminescence Resonance Energy Transfer 1-Based β-Arrestin2 Recruitment Assay , 2005, Journal of biomolecular screening.

[67]  R. Glennon,et al.  Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens , 2004, Psychopharmacology.

[68]  Yawen Bai,et al.  Redesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography. , 2002, Journal of molecular biology.

[69]  D. E. Nichols,et al.  Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N,N-diethyllysergamide (LSD). , 2002, Journal of medicinal chemistry.

[70]  Bryan L. Roth,et al.  Salvinorin A: A potent naturally occurring nonnitrogenous κ opioid selective agonist , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Paul Ernsberger,et al.  Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  P Ghanouni,et al.  The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-dependent activation. , 2000, The Journal of biological chemistry.

[73]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[74]  K. Sharp,et al.  Electrostatic contributions to heat capacity changes of DNA-ligand binding. , 1998, Biophysical journal.

[75]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[76]  Donald G. Truhlar,et al.  New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions , 1998 .

[77]  P S Goldman-Rakic,et al.  5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[78]  L. JakabR,et al.  霊長類大脳皮質の5‐ヒドロキシトリプタミン2Aセロトニン受容体 錐体細胞先端樹状突起での幻覚剤及び抗精神病剤の作用部位 , 1998 .

[79]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[80]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[81]  Donald G. Truhlar,et al.  MODEL FOR AQUEOUS SOLVATION BASED ON CLASS IV ATOMIC CHARGES AND FIRST SOLVATION SHELL EFFECTS , 1996 .

[82]  J Hermans,et al.  Hydrophilicity of cavities in proteins , 1996, Proteins.

[83]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[84]  F. Wurm,et al.  Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. , 1996, Nucleic acids research.

[85]  D. Marona-Lewicka,et al.  Stereoselective pharmacological effects of lysergic acid amides possessing chirality in the amide substituent , 1995, Behavioural Brain Research.

[86]  Kim A. Sharp,et al.  Polyelectrolyte electrostatics: Salt dependence, entropic, and enthalpic contributions to free energy in the nonlinear Poisson–Boltzmann model , 1995 .

[87]  B. Roth,et al.  Differential ergoline and ergopeptine binding to 5-hydroxytryptamine2A receptors: ergolines require an aromatic residue at position 340 for high affinity binding. , 1995, Molecular pharmacology.

[88]  Gerhard Klebe,et al.  Comparison of Automatic Three-Dimensional Model Builders Using 639 X-ray Structures , 1994, J. Chem. Inf. Comput. Sci..

[89]  M. Ferrari,et al.  Dopamine D2–Receptor Imaging With 123I-Iodobenzamide SPECT in Migraine Patients Abusing Ergotamine: Does Ergotamine Cross The Blood Brain Barrier? , 1993, Cephalalgia : an international journal of headache.

[90]  J. Black,et al.  Operational models of pharmacological agonism , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[91]  A. Hofmann How LSD originated. , 1979, Journal of psychedelic drugs.

[92]  S. Snyder,et al.  Stereospecific binding ofd-lysergic acid diethylamide (LSD) to brain membranes: Relationship to serotonin receptors , 1975, Brain Research.

[93]  R. Kassel,et al.  Emetic activity of reduced lysergamides. , 1973, Journal of medicinal chemistry.

[94]  C. Chothia,et al.  Molecular Structure of LSD , 1972, Science.

[95]  J. Vane A SENSITIVE METHOD FOR THE ASSAY OF 5‐HYDROXYTRYPTAMINE , 1997, British journal of pharmacology and chemotherapy.

[96]  D. Woolley,et al.  Some serotoninlike activities of lysergic acid diethylamide. , 1956, Science.

[97]  A. Stoll,et al.  Amide der stereoisomeren Lysergsäuren und Dihydro‐lysergsäuren. 38. Mitteilung über Mutterkornalkaloide , 1955 .

[98]  D. Woolley,et al.  A BIOCHEMICAL AND PHARMACOLOGICAL SUGGESTION ABOUT CERTAIN MENTAL DISORDERS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.