Learning for search result diversification
暂无分享,去创建一个
Xueqi Cheng | Yanyan Lan | Jiafeng Guo | Yadong Zhu | Shuzi Niu | Yanyan Lan | J. Guo | Xueqi Cheng | Shuzi Niu | Yadong Zhu
[1] Tie-Yan Liu,et al. Listwise approach to learning to rank: theory and algorithm , 2008, ICML '08.
[2] Sreenivas Gollapudi,et al. An axiomatic approach for result diversification , 2009, WWW '09.
[3] Tie-Yan Liu,et al. Learning to rank for information retrieval , 2009, SIGIR.
[4] Arjen P. de Vries,et al. Combining implicit and explicit topic representations for result diversification , 2012, SIGIR '12.
[5] M. L. Fisher,et al. An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..
[6] Sreenivas Gollapudi,et al. Diversifying search results , 2009, WSDM '09.
[7] Ben Carterette,et al. Probabilistic models of ranking novel documents for faceted topic retrieval , 2009, CIKM.
[8] W. Bruce Croft,et al. Diversity by proportionality: an election-based approach to search result diversification , 2012, SIGIR '12.
[9] Ben Carterette,et al. An analysis of NP-completeness in novelty and diversity ranking , 2009, Information Retrieval.
[10] Thorsten Joachims,et al. Predicting diverse subsets using structural SVMs , 2008, ICML '08.
[11] Xueqi Cheng,et al. Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation Measures , 2015, SIGIR.
[12] Olivier Chapelle,et al. Expected reciprocal rank for graded relevance , 2009, CIKM.
[13] Craig MacDonald,et al. Exploiting query reformulations for web search result diversification , 2010, WWW '10.
[14] Thorsten Joachims,et al. Online Structured Prediction via Coactive Learning , 2012, ICML.
[15] Xueqi Cheng,et al. Exploring and Exploiting Proximity Statistic for Information Retrieval Model , 2012, AIRS.
[16] Filip Radlinski,et al. Learning optimally diverse rankings over large document collections , 2010, ICML.
[17] Jun Wang,et al. Portfolio theory of information retrieval , 2009, SIGIR.
[18] Thorsten Joachims,et al. Dynamic ranked retrieval , 2011, WSDM '11.
[19] Tao Qin,et al. Learning to rank relational objects and its application to web search , 2008, WWW.
[20] Maoqiang Xie,et al. Modeling Parameter Interactions in Ranking SVM , 2015, CIKM.
[21] Yisong Yue,et al. Linear Submodular Bandits and their Application to Diversified Retrieval , 2011, NIPS.
[22] Tao Qin,et al. LETOR: A benchmark collection for research on learning to rank for information retrieval , 2010, Information Retrieval.
[23] Jade Goldstein-Stewart,et al. The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.
[24] Charles L. A. Clarke,et al. Overview of the TREC 2011 Web Track , 2011, TREC.
[25] Filip Radlinski,et al. Improving personalized web search using result diversification , 2006, SIGIR.
[26] Thorsten Joachims,et al. Online learning to diversify from implicit feedback , 2012, KDD.
[27] Thorsten Joachims,et al. Structured learning of two-level dynamic rankings , 2011, CIKM '11.
[28] Saul Vargas,et al. Explicit relevance models in intent-oriented information retrieval diversification , 2012, SIGIR '12.
[29] J. Marden. Analyzing and Modeling Rank Data , 1996 .
[30] Krishna Bharat,et al. Diversifying web search results , 2010, WWW '10.
[31] Charles L. A. Clarke,et al. Overview of the TREC 2010 Web Track , 2010, TREC.
[32] Charles L. A. Clarke,et al. A comparative analysis of cascade measures for novelty and diversity , 2011, WSDM '11.
[33] Charles L. A. Clarke,et al. An Effectiveness Measure for Ambiguous and Underspecified Queries , 2009, ICTIR.
[34] W. Bruce Croft,et al. A Markov random field model for term dependencies , 2005, SIGIR '05.
[35] Filip Radlinski,et al. Learning diverse rankings with multi-armed bandits , 2008, ICML '08.
[36] Tao Qin,et al. Global Ranking Using Continuous Conditional Random Fields , 2008, NIPS.
[37] Charles L. A. Clarke,et al. Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.