Local limits for orthogonal polynomials for varying measures via universality

Abstract We consider orthogonal polynomials p n e − 2 n Q n , x for varying measures and use universality limits to prove ”local limits” lim n → ∞ p n e − 2 n Q n , y j n + z K n y j n , y j n p n e − 2 n Q n , y j n e − n Q n ′ y j n K n y j n , y j n z = cos π z . Here y j n is a local maximum point of p n e − n Q n in the ”bulk” of the support, K n y j n , y j n is the normalized reproducing kernel, and the limit holds uniformly for z in compact subsets of the plane. We also consider local limits at the ”soft edge” of the spectrum, which involve the Airy function.

[1]  V. Totik Universality Under Szegő’s Condition , 2016, Canadian Mathematical Bulletin.

[2]  D. Lubinsky,et al.  Universality limits in the bulk for varying measures , 2008 .

[3]  D. Lubinsky,et al.  Universality Limits at the Soft Edge of the Spectrum via Classical Complex Analysis , 2010 .

[4]  P. Miller,et al.  The Steepest Descent Method for Orthogonal Polynomials on the Real Line with Varying Weights , 2008, 0805.1980.

[5]  Vilmos Totik,et al.  General Orthogonal Polynomials , 1992 .

[6]  K. Mclaughlin Asymptotic analysis of random matrices with external source and a family of algebraic curves , 2006, math-ph/0610050.

[7]  P. Forrester Log-Gases and Random Matrices , 2010 .

[8]  Local asymptotics for orthonormal polynomials on the unit circle via universality , 2020 .

[9]  Doron S Lubinsky A New Approach to Universality Limits Involving Orthogonal Polynomials , 2007 .

[10]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[11]  B. Simon Two extensions of Lubinsky’s universality theorem , 2008 .

[12]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.

[13]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[14]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[15]  Pavel Bleher,et al.  Random Matrix Models and Their Applications , 2001 .

[16]  B. Simon Szegő's Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials , 2010 .

[17]  Vilmos Totik,et al.  Asymptotics for Christoffel Functions with Varying Weights , 2000, Adv. Appl. Math..

[18]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .

[19]  The ∂ Steepest Descent Method and the Asymptotic Behavior of Polynomials Orthogonal on the Unit Circle with Fixed and Exponentially Varying Nonanalytic Weights , 2004, math/0406484.

[20]  V. Totik Universality and fine zero spacing on general sets , 2009 .

[21]  Local asymptotics for orthonormal polynomials in the interior of the support via universality , 2019, Proceedings of the American Mathematical Society.

[22]  A. Kuijlaars,et al.  Universality for Eigenvalue Correlations at the Origin of the Spectrum , 2003, math-ph/0305044.

[23]  Doron S. Lubinsky,et al.  Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials , 2008, J. Approx. Theory.

[24]  Manuel Soares,et al.  Airy Functions And Applications To Physics , 2004 .