Performance Study of a Multi-Deme Parallel Genetic Algorithm with Adaptive Mutation

This paper presents a performance study of a parallel, coarse-grained, multiple-deme Genetic Algorithm (GA) with adaptive mutation. The effect of varying migration period and number of subpopulations upon the GA is evaluated. Using common unimodal and multimodal objective functions, this study measures the convergence velocity and solution quality for the proposed genetic algorithm. In this paper, we briefly survey previous work in static and adaptive control parameters and parallel genetic algorithms (PGAs). Experimental results show that migration period and the number of subpopulations significantly influence the performance of the genetic algorithm.

[1]  Henry Wang,et al.  Optimization of fitness functions with non-ordered parameters by genetic algorithms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[2]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[3]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[4]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[5]  Thomas Bäck,et al.  Intelligent Mutation Rate Control in Canonical Genetic Algorithms , 1996, ISMIS.

[6]  Kwong-Sak Leung,et al.  A genetic algorithm based on mutation and crossover with adaptive probabilities , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[7]  D. Thierens Adaptive mutation rate control schemes in genetic algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[8]  Q. H. Wu,et al.  Stochastic optimization of control parameters in genetic algorithms , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[9]  Tomoyuki Hiroyasu,et al.  A New Model of Distributed Genetic Algorithm for Cluster Systems: Dual Individual DGA , 2000 .

[10]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Joachim Stender,et al.  Parallel Genetic Algorithms: Theory and Applications , 1993 .

[12]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[13]  Loo Hay Lee,et al.  Developing a self-learning adaptive genetic algorithm , 2000, Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393).

[14]  Katia Sycara,et al.  Reasons for premature convergence of self-adapting mutation rates , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[15]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[16]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[17]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[18]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .