Modelling cement microstructure: Pixels, particles, and property prediction

During the past ten years, a comprehensive model for the three-dimensional microstructural development of cement paste during hydration has been developed and validated. The model employs a number of computational and analytical tools including cellular automata, digital image processing and reconstruction, percolation theory, and the maturity method. The model has been successfully applied to predicting the percolation and diffusion properties of cement pastes. Through a kinetics calibration, the evolution of heat release, chemical shrinkage, and compressive strength with time have been predicted. The variation of curing temperature and availability of external curing water can also be simulated using the developed model. This paper reviews the computational tools employed in the model, summarizes the experimental and modelling approaches, and presents representative predicted properties.RésuméDurant les dix dernières années, un modèle tri-dimensionnel pour le développement microstructurel de la pâte de ciment pendant l'hydratation a été développé et validé. Le modèle utilise un certain nombre d'outils informatiques et analytiques incluant un automate cellulaire, l'analyse d'images numériques et la théorie de la percolation. Le modèle a été utilisé avec succès pour prédire les propriétés de percolation et de diffusion des pâtes de ciment. Grâce à un étalonnage cinétique, l'évolution du dégagement de chaleur, le retrait chimique et la résistance à la compression ont pu être prévus. La variation de température de maturation et la disponibilité de l'eau de cure externe, peuvent être également simulées en utilisant le modèle développé. Cet article passe en revue les outils informatiques utilisés dans le modèle, résume les approches expérimentales et de modélisation et présente les propriétés prévues par le modèle.

[1]  J. Clifton,et al.  Service life of concrete , 1989 .

[2]  H. Jennings,et al.  Simulation of Microstructure Development During the Hydration of a Cement Compound , 1986 .

[3]  E. Garboczi,et al.  The Microstructure of Portland Cement-Based Materials: Computer Simulation and Percolation Theory , 1998 .

[4]  K. Scrivener The Microstructure of Anhydrous Cement and its Effect on Hydration , 1986 .

[5]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[6]  Ke Xu,et al.  Microstructure and transport properties of porous building materials , 1998 .

[7]  E. Garboczi,et al.  Computer simulation of the diffusivity of cement-based materials , 1992 .

[8]  Nicholas J. Carino,et al.  The Maturity Method: Theory and Application , 1984 .

[9]  Cornelius T. Leondes Digital image processing : techniques and applications , 1994 .

[10]  J. Hammersley Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Edward J. Garboczi,et al.  Multi-Scale Microstructural Modeling of Concrete Diffusivity: Identification of Significant Varibles , 1998 .

[12]  Peter V. Coveney,et al.  Cellular automaton simulations of cement hydration and microstructure development , 1994 .

[13]  Dale P. Bentz,et al.  Prediction of Adiabatic Temperature Rise in Conventional and High-Performance Concretes Using a 3-D Microstructural Model , 1998 .

[14]  A. Nonat,et al.  Studies on mechanism and physico-chemical parameters at the origin of the cement setting. I: The fundamental processes involved during the cement setting , 1995 .

[15]  Edward J. Garboczi,et al.  Computational materials science of cement-based materials , 1993 .

[16]  H. Brouwers,et al.  Study of the relation between hydrated Portland cement composition and leaching resistance , 1998 .

[17]  E. Garboczi,et al.  Modelling the leaching of calcium hydroxide from cement paste: effects on pore space percolation and diffusivity , 1992 .

[18]  A. Nonat Interactions between chemical evolution (hydration) and physical evolution (setting) in the case of tricalcium silicate , 1994 .

[19]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[20]  Edward J. Garboczi,et al.  Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass , 1998 .

[21]  Edward J. Garboczi,et al.  Percolation of phases in a three-dimensional cement paste microstructural model , 1991 .

[22]  Torben Knudsen,et al.  The dispersion model for hydration of portland cement I. General concepts , 1984 .

[23]  Steve Brown,et al.  A cellular automaton model of steady-state columnar-dendritic growth in binary alloys , 1995, Journal of Materials Science.

[24]  H. Taylor,et al.  The hydration of tricalcium aluminate and tetracalcium aluminoferrite in the presence of calcium sulfate , 1986 .

[25]  J. Quiblier A new three-dimensional modeling technique for studying porous media , 1984 .

[26]  D. Bentz Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development , 1997 .

[27]  P. Stutzman,et al.  SEM Analysis and Computer Modelling of Hydration of Portland Cement Particles , 1994 .

[28]  D. Bentz,et al.  Hydraulic radius and transport in reconstructed model three-dimensional porous media , 1994 .

[29]  P. Stutzman,et al.  Cement clinker characterization by scanning electron microscopy , 1991 .

[30]  E. Garboczi,et al.  Cellular automaton algorithm for surface mass transport due to curvature gradients simulations of sintering , 1992 .

[31]  Sebastien Remond,et al.  Incorporation of fly ash into a 3-D cement hydration microstructure model , 1997 .

[32]  Nicos Martys,et al.  Application of Digital-Image-Based Models to Microstructure, Transport Properties, and Degradation of Cement-Based Materials. , 1996 .

[33]  Dale P Bentz,et al.  CEMHYD3D:: a three-dimensional cement hydration and microstructure development modelling package , 1997 .

[34]  T. Karapiperis,et al.  Cellular automaton model of precipitation/dissolution coupled with solute transport , 1995, comp-gas/9502004.

[35]  Nicholas J. Carino,et al.  Applicability of the maturity method to high-performance concrete , 1992 .