Polar codes for arbitrary classical-quantum channels and arbitrary cq-MACs

We prove polarization theorems for arbitrary classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation and an Arikan-style transformation is applied using this operation. It is shown that as the number of polarization steps becomes large, the synthetic cq-channels polarize to deterministic homomorphism channels that project their input to a quotient group of the input alphabet. This result is used to construct polar codes for arbitrary cq-channels and arbitrary classical-quantum multiple access channels (cq-MAC). The encoder can be implemented in O(N log N) operations, where N is the blocklength of the code. A quantum successive cancellation decoder for the constructed codes is proposed. It is shown that the probability of error of this decoder decays faster than 2−Nβ for any β < ½

[1]  Eren Sasoglu Polar Coding Theorems for Discrete Systems , 2011 .

[2]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[3]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[4]  Alexander Barg,et al.  Polar Codes for $q$-Ary Channels, $q=2^{r}$ , 2013, IEEE Trans. Inf. Theory.

[5]  Rajai Nasser,et al.  Fourier Analysis of MAC Polarization , 2017, IEEE Transactions on Information Theory.

[6]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[7]  Tomohiro Ogawa,et al.  Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.

[8]  Pranab Sen,et al.  Achieving the Han-Kobayashi inner bound for the quantum interference channel , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  Rajai Nasser,et al.  Polar Codes for Arbitrary Classical-Quantum Channels and Arbitrary cq-MACs , 2018, IEEE Transactions on Information Theory.

[10]  Rajai Nasser,et al.  Polar Codes for Arbitrary DMCs and Arbitrary MACs , 2016, IEEE Transactions on Information Theory.

[11]  Andreas J. Winter The capacity of the quantum multiple-access channel , 2001, IEEE Trans. Inf. Theory.

[12]  Alexander S. Holevo,et al.  Reliability function of general classical-Quantum channel , 1999, IEEE Trans. Inf. Theory.

[13]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[14]  Erdal Arikan Bilkent Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, ISIT 2012.

[15]  Rajai Nasser An Ergodic Theory of Binary Operations—Part I: Key Properties , 2016, IEEE Transactions on Information Theory.

[16]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[17]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[18]  E. Knill,et al.  Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.

[19]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[20]  Saikat Guha,et al.  Polar Codes for Classical-Quantum Channels , 2011, IEEE Transactions on Information Theory.

[21]  Erdal Arikan,et al.  Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[22]  Emre Telatar,et al.  Polar Codes for the m-User MAC , 2010 .

[23]  Rajai Nasser Ergodic Theory Meets Polarization. I: An Ergodic Theory for Binary Operations , 2014, ArXiv.

[24]  Christoph Hirche,et al.  Polar Codes in Network Quantum Information Theory , 2016, IEEE Transactions on Information Theory.

[25]  Rajai Nasser An Ergodic Theory of Binary Operations—Part II: Applications to Polarization , 2017, IEEE Transactions on Information Theory.

[26]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[27]  Aria Ghasemian Sahebi,et al.  Multilevel Channel Polarization for Arbitrary Discrete Memoryless Channels , 2013, IEEE Transactions on Information Theory.

[28]  E. Telatar,et al.  Polar Codes for the-User Multiple Access Channel , 2012 .