Coherent control of two nuclear spins using the anisotropic hyperfine interaction.

We demonstrate coherent control of two nuclear spins mediated by the magnetic resonance of a hyperfine-coupled electron spin. This control is used to create a double-nuclear coherence in one of the two electron spin manifolds, starting from an initial thermal state, in direct analogy to the creation of an entangled (Bell) state from an initially pure unentangled state. We identify challenges and potential solutions to obtaining experimental gate fidelities useful for quantum information processing in this type of system.