Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell

In the guinea-pig hippocampal CA3 region, the synaptic connection from pyramidal neurons tostratum pyramidale inhibitory neurons is remarkable. Anatomically, the connection usually consists of a single release site on an interneuronal dendrite, sometimes 200 μm or more from the soma. Nevertheless, the connection is physiologically powerful, in that a single presynaptic action potential can evoke, with probability 0.1 to 0.6, a postsynaptic action potential with latency 2 to 6 ms. We construct a model interneuron and show that the anatomical and physiological observations can be reconciled if the interneuron dendrites are electrically excitable. Excitable dendrites could also account for depolarization-induced amplification of the pyramidal cell-interneuron EPSP in the voltage range subthreshold for spike generation.

[1]  B H Gähwiler,et al.  Activity-induced elevations of intracellular calcium concentration in pyramidal and nonpyramidal cells of the CA3 region of rat hippocampal slice cultures. , 1992, Journal of neurophysiology.

[2]  K. Maekawa,et al.  Properties of spontaneous and evoked synaptic activities of thalamic ventrobasal neurons. , 1967, Journal of neurophysiology.

[3]  G. Buzsáki,et al.  Phase relations of hippocampal projection cells and interneurons to theta activity in the anesthetized rat , 1983, Brain Research.

[4]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[5]  N. Tamamaki,et al.  Complete Axon Arborization of a Single CA3 Pyramidal Cell in the Rat Hippocampus, and its Relationship With Postsynaptic Parvalbumin‐containing Interneurons , 1993, The European journal of neuroscience.

[6]  R. Traub,et al.  Enhanced NMDA conductance can account for epileptiform activity induced by low Mg2+ in the rat hippocampal slice. , 1994, The Journal of physiology.

[7]  R. Llinás,et al.  Electrophysiological properties of dendrites and somata in alligator Purkinje cells. , 1971, Journal of neurophysiology.

[8]  R. Llinás,et al.  The spatial distribution of ionic conductances in normal and axotomized motorneurons , 1977, Neuroscience.

[9]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[10]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  R. Miles Tetanic stimuli induce a short‐term enhancement of recurrent inhibition in the CA3 region of guinea‐pig hippocampus in vitro. , 1991, The Journal of physiology.

[13]  R. Traub,et al.  Neuronal Networks of the Hippocampus , 1991 .

[14]  R. Dingledine,et al.  Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus. , 1993, The Journal of physiology.

[15]  R. Traub,et al.  Synaptic and intrinsic conductances shape picrotoxin‐induced synchronized after‐discharges in the guinea‐pig hippocampal slice. , 1993, The Journal of physiology.

[16]  H Korn,et al.  Excitatory synaptic connections onto rat hippocampal inhibitory cells may involve a single transmitter release site. , 1994, The Journal of physiology.

[17]  T. Freund,et al.  Precision and Variability in Postsynaptic Target Selection of Inhibitory Cells in the Hippocampal CA3 Region , 1993, The European journal of neuroscience.

[18]  D Contreras,et al.  Electrophysiological properties of cat reticular thalamic neurones in vivo. , 1993, The Journal of physiology.

[19]  J. Lacaille Postsynaptic potentials mediated by excitatory and inhibitory amino acids in interneurons of stratum pyramidale of the CA1 region of rat hippocampal slices in vitro. , 1991, Journal of neurophysiology.

[20]  William A. Catterall,et al.  Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons , 1989, Neuron.

[21]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[22]  D. Prince,et al.  Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. , 1988, Journal of neurophysiology.

[23]  R. Llinás,et al.  Localization of P-type calcium channels in the central nervous system. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Miles,et al.  Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea‐pig in vitro. , 1990, The Journal of physiology.

[25]  P. Schwartzkroin,et al.  Local circuit synaptic interactions in hippocampal brain slices , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  R. Wong,et al.  Excitatory synaptic responses mediated by GABAA receptors in the hippocampus , 1991, Science.

[27]  J. Lacaille,et al.  Membrane properties and synaptic responses of interneurons located near the stratum lacunosum-moleculare/radiatum border of area CA1 in whole-cell recordings from rat hippocampal slices. , 1994, Journal of neurophysiology.

[28]  Shaul Hestrin,et al.  Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons , 1993, Neuron.

[29]  D. Thurbon,et al.  Electrotonic profiles of interneurons in stratum pyramidale of the CA1 region of rat hippocampus. , 1994, Journal of neurophysiology.

[30]  D. Prince,et al.  Electrophysiology of isolated hippocampal pyramidal dendrites , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  R K Wong,et al.  Inhibitory control of local excitatory circuits in the guinea‐pig hippocampus. , 1987, The Journal of physiology.

[32]  R Llinás,et al.  Alterations of synaptic action in chromatolysed motoneurones of the cat , 1970, The Journal of physiology.

[33]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[34]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[35]  D. Prince,et al.  Intradendritic recordings from hippocampal neurons. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Nicoll,et al.  Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. , 1990, The Journal of physiology.

[37]  R K Wong,et al.  Unitary inhibitory synaptic potentials in the guinea‐pig hippocampus in vitro. , 1984, The Journal of physiology.

[38]  P. Schwindt,et al.  Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. , 1985, Journal of neurophysiology.

[39]  Y. Yaari,et al.  Kinetic properties of NMDA receptor‐mediated synaptic currents in rat hippocampal pyramidal cells versus interneurones. , 1993, The Journal of physiology.

[40]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[41]  E. Kandel,et al.  ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. , 1961, Journal of neurophysiology.

[42]  R. Traub,et al.  A branching dendritic model of a rodent CA3 pyramidal neurone. , 1994, The Journal of physiology.

[43]  M. Frotscher,et al.  Postsynaptic-gabaergic inhibition of non-pyramidal neurons in the guinea-pig hippocampus , 1986, Neuroscience.

[44]  R Llinás,et al.  Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat , 1970, The Journal of physiology.