Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and Chiral Properties

[1]  N. Zheng,et al.  Surface Coordination of Multiple Ligands Endows N‐Heterocyclic Carbene‐Stabilized Gold Nanoclusters with High Robustness and Surface Reactivity , 2020, Angewandte Chemie.

[2]  N. Zheng,et al.  Surface Coordination of Multiple Ligands Endows N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with High Robustness and Surface Reactivity. , 2020, Angewandte Chemie.

[3]  T. Bürgi,et al.  Amplification of enantiomeric excess by dynamic inversion of enantiomers in deracemization of Au38 clusters , 2020, Nature Communications.

[4]  Xi-Yan Dong,et al.  AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. , 2019, Angewandte Chemie.

[5]  Yuanxin Du,et al.  Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. , 2020, Chemical reviews.

[6]  Xi-Yan Dong,et al.  AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters , 2019, Angewandte Chemie.

[7]  R. Jin,et al.  Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic , 2019, Proceedings of the National Academy of Sciences.

[8]  L. Cavallo,et al.  Towards the online computer-aided design of catalytic pockets , 2019, Nature Chemistry.

[9]  N. Zheng,et al.  Cd12Ag32(SePh)36: Non-Noble Metal Doped Silver Nanoclusters. , 2019, Journal of the American Chemical Society.

[10]  N. Zheng,et al.  Highly Robust but Surface-Active: N-Heterocyclic Carbene-Stabilized Au25 Nanocluster as a Homogeneous Catalyst , 2019 .

[11]  H. Häkkinen,et al.  Chiral Inversion of Thiolate-Protected Gold Nanoclusters via Core Reconstruction without Breaking a Au–S Bond , 2019, Journal of the American Chemical Society.

[12]  Wenwen Zhan,et al.  Enantioselective Synthesis of Homochiral Au13 Nanoclusters and Their Chiroptical Activities. , 2019, Inorganic chemistry.

[13]  C. Tung,et al.  [Ag48(C≡C tBu)20(CrO4)7]: An Atomically Precise Silver Nanocluster Co-protected by Inorganic and Organic Ligands. , 2019, Journal of the American Chemical Society.

[14]  Quan‐Ming Wang,et al.  Chiroptical Activity Enhancement via Structural Control: The Chiral Synthesis and Reversible Interconversion of Two Intrinsically Chiral Gold Nanoclusters. , 2019, Journal of the American Chemical Society.

[15]  Bo Li,et al.  Metal-containing crystalline luminescent thermochromic materials , 2018, Coordination Chemistry Reviews.

[16]  N. Zheng,et al.  Surface Chemistry of Atomically Precise Coinage-Metal Nanoclusters: From Structural Control to Surface Reactivity and Catalysis. , 2018, Accounts of chemical research.

[17]  Zhikun Wu,et al.  Discovery, Mechanism, and Application of Antigalvanic Reaction. , 2018, Accounts of chemical research.

[18]  Yukatsu Shichibu,et al.  An Inherently Chiral Au24 Framework with Double-Helical Hexagold Strands. , 2018, Angewandte Chemie.

[19]  Jiawei Lv,et al.  Enantioseparation of Au20 (PP3 )4 Cl4 Clusters with Intrinsically Chiral Cores , 2018, Angewandte Chemie.

[20]  Jiawei Lv,et al.  Enantioseparation of Au20 (PP3 )4 Cl4 Clusters with Intrinsically Chiral Cores. , 2018, Angewandte Chemie.

[21]  N. Zheng,et al.  From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13 Cu2 Nanoclusters. , 2018, Angewandte Chemie.

[22]  Guanggang Gao,et al.  Atom-Precise Modification of Silver(I) Thiolate Cluster by Shell Ligand Substitution: A New Approach to Generation of Cluster Functionality and Chirality. , 2018, Journal of the American Chemical Society.

[23]  N. Zheng,et al.  From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13 Cu2 Nanoclusters. , 2018, Angewandte Chemie.

[24]  Jianping Xie,et al.  Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction , 2017, Nature Communications.

[25]  N. Zheng,et al.  From Racemic Metal Nanoparticles to Optically Pure Enantiomers in One Pot. , 2017, Journal of the American Chemical Society.

[26]  N. Zheng,et al.  Bulky Surface Ligands Promote Surface Reactivities of [Ag141X12(S-Adm)40]3+ (X = Cl, Br, I) Nanoclusters: Models for Multiple-Twinned Nanoparticles. , 2017, Journal of the American Chemical Society.

[27]  T. Pradeep,et al.  Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. , 2017, Chemical reviews.

[28]  Michael G. Taylor,et al.  Molecular “surgery” on a 23-gold-atom nanoparticle , 2017, Science Advances.

[29]  Yongbo Song,et al.  In Situ Two-Phase Ligand Exchange: A New Method for the Synthesis of Alloy Nanoclusters with Precise Atomic Structures. , 2017, Journal of the American Chemical Society.

[30]  R. Jin,et al.  Emergence of hierarchical structural complexities in nanoparticles and their assembly , 2016, Science.

[31]  T. Tsukuda,et al.  Amplification of the Optical Activity of Gold Clusters by the Proximity of BINAP. , 2016, The journal of physical chemistry letters.

[32]  R. Jin,et al.  Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. , 2016, Chemical reviews.

[33]  Zhikun Wu,et al.  Structure of Chiral Au44(2,4-DMBT)26 Nanocluster with an 18-Electron Shell Closure. , 2016, Journal of the American Chemical Society.

[34]  L. Gu,et al.  Interfacial electronic effects control the reaction selectivity of platinum catalysts. , 2016, Nature materials.

[35]  Combined heterogeneous metal/chiral amine: multiple relay catalysis for versatile eco-friendly synthesis. , 2014, Angewandte Chemie.

[36]  T. Verbiest,et al.  Chiral phase transfer and enantioenrichment of thiolate-protected Au₁₀₂ clusters. , 2014, Journal of the American Chemical Society.

[37]  T. Bürgi,et al.  Chirality in thiolate-protected gold clusters. , 2014, Accounts of chemical research.

[38]  Quan‐Ming Wang,et al.  Postclustering dynamic covalent modification for chirality control and chiral sensing. , 2013, Journal of the American Chemical Society.

[39]  J. Lee,et al.  Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. , 2012, ACS nano.

[40]  Thomas Bürgi,et al.  Enantiomerentrennung und CD‐Spektren von Au40(SCH2CH2Ph)24 als spektroskopischer Beleg für intrinsische Chiralität , 2012 .

[41]  T. Bürgi,et al.  Separation of enantiomers and CD spectra of Au40(SCH2CH2Ph)24: spectroscopic evidence for intrinsic chirality. , 2012, Angewandte Chemie.

[42]  T. Bürgi,et al.  First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands , 2012, Nature Communications.

[43]  S. Luo,et al.  Magnetic nanoparticle supported polyoxometalates (POMs) via non-covalent interaction: reusable acid catalysts and catalyst supports for chiral amines. , 2011, Chemical communications.

[44]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[45]  H. Yao,et al.  Asymmetric Transformation of Monolayer-Protected Gold Nanoclusters via Chiral Phase Transfer , 2008 .

[46]  D. Pine,et al.  Chiral colloidal clusters , 2008, Nature.

[47]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[48]  Tatsuya Tsukuda,et al.  Chiroptical activity of BINAP-stabilized undecagold clusters. , 2006, The journal of physical chemistry. B.

[49]  R. Murray,et al.  Substituent effects on the exchange dynamics of ligands on 1.6 nm diameter gold nanoparticles. , 2004, Langmuir : the ACS journal of surfaces and colloids.