Gaussian Elimination versus Greedy Methods for the Synthesis of Linear Reversible Circuits

Linear reversible circuits represent a subclass of reversible circuits with many applications in quantum computing. These circuits can be efficiently simulated by classical computers and their size is polynomially bounded by the number of qubits, making them a good candidate to deploy efficient methods to reduce computational costs. We propose a new algorithm for synthesizing any linear reversible operator by using an optimized version of the Gaussian elimination algorithm coupled with a tuned LU factorization. We also improve the scalability of purely greedy methods. Overall, on random operators, our algorithms improve the state-of-the-art methods for specific ranges of problem sizes: The custom Gaussian elimination algorithm provides the best results for large problem sizes (n > 150), while the purely greedy methods provide quasi optimal results when n < 30. On a benchmark of reversible functions, we manage to significantly reduce the CNOT count and the depth of the circuit while keeping other metrics of importance (T-count, T-depth) as low as possible.

[1]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[2]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[3]  Michele Mosca,et al.  On the CNOT-complexity of CNOT-PHASE circuits , 2017, 1712.01859.

[4]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[5]  Giovanni De Micheli,et al.  The Role of Multiplicative Complexity in Compiling Low $T$-count Oracle Circuits , 2019, 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[6]  C. Gamrat,et al.  Nanotube devices based crossbar architecture: toward neuromorphic computing , 2010, Nanotechnology.

[7]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  Earl T. Campbell,et al.  An efficient quantum compiler that reduces T count , 2017, Quantum Science and Technology.

[9]  Wheeler Ruml,et al.  Effective Heuristics for Suboptimal Best-First Search , 2016, J. Artif. Intell. Res..

[10]  Marc Baboulin,et al.  Quantum CNOT Circuits Synthesis for NISQ Architectures Using the Syndrome Decoding Problem , 2020, RC.

[11]  Dmitri Maslov,et al.  Optimal and asymptotically optimal NCT reversible circuits by the gate types , 2016, Quantum Inf. Comput..

[12]  Don Monroe,et al.  Neuromorphic computing gets ready for the (really) big time , 2014, CACM.

[13]  Hiroshi Imai,et al.  Enhanced A* Algorithms for Multiple Alignments: Optimal Alignments for Several Sequences and k-Opt Approximate Alignments for Large Cases , 1999, Theoretical Computer Science.

[14]  M. Elowitz,et al.  Combinatorial Synthesis of Genetic Networks , 2002, Science.

[15]  Giovanni De Micheli,et al.  SAT-based {CNOT, T} Quantum Circuit Synthesis , 2018, RC.

[16]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[17]  Mohd Shahrizal Sunar,et al.  A Comprehensive Study on Pathfinding Techniques for Robotics and Video Games , 2015, Int. J. Comput. Games Technol..

[18]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[19]  Aleks Kissinger,et al.  CNOT circuit extraction for topologically-constrained quantum memories , 2019, Quantum Inf. Comput..

[20]  Michele Mosca,et al.  Quantum circuit optimizations for NISQ architectures , 2019, Quantum Science and Technology.

[21]  D. Maslov,et al.  Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite-neighbor quantum architectures , 2007 .

[22]  Gordon E. Moore,et al.  Progress in digital integrated electronics , 1975 .

[23]  Michele Mosca,et al.  On the controlled-NOT complexity of controlled-NOT–phase circuits , 2018, Quantum Science and Technology.

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  Fredrik Johansson,et al.  Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language , 2017, ISSAC.

[26]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[27]  Eric A. Hansen,et al.  Multiple sequence alignment using anytime A* , 2002, AAAI/IAAI.

[28]  Teruhisa Miura,et al.  A* with Partial Expansion for Large Branching Factor Problems , 2000, AAAI/IAAI.

[29]  Wheeler Ruml,et al.  A Comparison of Greedy Search Algorithms , 2010, SOCS.

[30]  John P. Hayes,et al.  Optimal synthesis of linear reversible circuits , 2008, Quantum Inf. Comput..

[31]  Joan Boyar,et al.  Logic Minimization Techniques with Applications to Cryptology , 2013, Journal of Cryptology.

[32]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[33]  Ben Schaeffer,et al.  A Cost Minimization Approach to Synthesis of Linear Reversible Circuits , 2014, ArXiv.

[34]  Richard E. Korf,et al.  Artificial Intelligence Search Algorithms , 1999, Algorithms and Theory of Computation Handbook.

[35]  Shang-Hua Teng,et al.  Optimal Space-Depth Trade-Off of CNOT Circuits in Quantum Logic Synthesis , 2019, SODA.

[36]  Dmitri Maslov,et al.  Automated optimization of large quantum circuits with continuous parameters , 2017, npj Quantum Information.

[37]  James M. Carothers,et al.  Digital logic circuits in yeast with CRISPR-dCas9 NOR gates , 2017, Nature Communications.

[38]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[39]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[40]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[41]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[42]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information: Frontmatter , 2010 .

[43]  Eric A. Hansen,et al.  Anytime Heuristic Search , 2011, J. Artif. Intell. Res..

[44]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[45]  G. De Micheli,et al.  ROS: Resource-constrained Oracle Synthesis for Quantum Computers , 2019, QPL.

[46]  Dmitri Maslov,et al.  Shorter Stabilizer Circuits via Bruhat Decomposition and Quantum Circuit Transformations , 2017, IEEE Transactions on Information Theory.

[47]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[48]  Samuel Kutin,et al.  Computation at a Distance , 2007, Chic. J. Theor. Comput. Sci..