Binaries in the Kuiper Belt

Binaries have played a crucial role many times in the history of modern astronomy and are doing so again in the rapidly evolving exploration of the Kuiper Belt. The large fraction of transneptunian objects that are binary or multiple, 48 such systems are now known, has been an unanticipated windfall. Separations and relative magnitudes measured in discovery images give important information on the statistical properties of the binary population that can be related to competing models of binary formation. Orbits, derived for 13 systems, provide a determination of the system mass. Masses can be used to derive densities and albedos when an independent size measurement is available. Angular momenta and relative sizes of the majority of binaries are consistent with formation by dynamical capture. The small satellites of the largest transneptunian objects, in contrast, are more likely formed from collisions. Correlations of the fraction of binaries with different dynamical populations or with other physical variables have the potential to constrain models of the origin and evolution of the transneptunian population as a whole. Other means of studying binaries have only begun to be exploited, including lightcurve, color, and spectral data. Because of the several channels for obtaining unique physical information, it is already clear that binaries will emerge as one of the most useful tools for unraveling the many complexities of transneptunian space.

[1]  Richard P. Binzel,et al.  A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves , 1994 .

[2]  W. Ip,et al.  A Shape-and-Density Model of the Putative Binary EKBO 2001QG298 , 2004 .

[3]  S. Bowyer,et al.  Parameter estimation in X-ray astronomy , 1976 .

[4]  R. Canup,et al.  Forced Resonant Migration of Pluto's Outer Satellites by Charon , 2006, Science.

[5]  D. Osip,et al.  PHYSICAL CHARACTERIZATION OF THE BINARY EDGEWORTH-KUIPER BELT OBJECT 2001 QT297 , 2003 .

[6]  David L. Rabinowitz,et al.  Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt , 2006 .

[7]  S. Cornell,et al.  A Giant Impact Origin of Pluto-Charon , 2005 .

[8]  Stephen A. Shectman,et al.  First-generation instruments for the Magellan telescopes: characteristics, operation, and performance , 2004, SPIE Astronomical Telescopes + Instrumentation.

[9]  M. W. Buie,et al.  A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt , 2006, Nature.

[10]  Time-resolved photometry of kuiper belt objects: rotations, shapes and phase functions , 2002, astro-ph/0205392.

[11]  Harold F. Levison,et al.  Planet Migration in Planetesimal Disks , 2007 .

[12]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[13]  W. McKinnon,et al.  On the origin of Triton and Pluto , 1984, Nature.

[14]  D. Rabinowitz,et al.  Direct measurement of the size of 2003 UB313 , 2005, astro-ph/0604245.

[15]  R. D. Watson,et al.  Occultation evidence for an atmosphere on Pluto , 1988, Nature.

[16]  A Brief History of Trans-Neptunian Space , 2006, astro-ph/0601654.

[17]  J. Emery,et al.  Physical Properties of Transneptunian Objects , 2007 .

[18]  Steven Soter,et al.  Q in the solar system , 1966 .

[19]  G. Jacoby,et al.  TIME-RESOLVED PHOTOMETRY USING A CCD. , 1986 .

[20]  R. S. Harrington,et al.  The satellite of Pluto , 1978 .

[21]  W. Calvin,et al.  Evidence for crystalline water and ammonia ices on Pluto's satellite charon. , 2000, Science.

[22]  W. Grundy,et al.  HST Photometry of trans-Neptunian Objects , 2003 .

[23]  1998 SM165: A large Kuiper belt object with an irregular shape , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Robert Grant Aitken,et al.  Binary Stars , 2009, Planetary Habitability in Binary Systems.

[25]  A. Doressoundiram,et al.  The CFEPS Kuiper Belt Survey: Strategy and presurvey results , 2006 .

[26]  Karri Muinonen,et al.  Statistical Ranging of Asteroid Orbits , 2001 .

[27]  H. Boehnhardt,et al.  ESO large program on Centaurs and TNOs: visible colors—final results , 2004 .

[28]  D McNally Textbook on Spherical Astronomy (6th edn) , 1978 .

[29]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[30]  D. Osip,et al.  The Orbit and Albedo of Trans-Neptunian Binary (58534) 1997 CQ29 , 2004, astro-ph/0407362.

[31]  D. Rabinowitz,et al.  Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL61 , 2005 .

[32]  C. Murray,et al.  Solar System Dynamics: Solar System Data , 2000 .

[33]  K. Noll Transneptunian Binaries , 2003 .

[34]  M. E. Brown,et al.  Satellites of the largest Kuiper Belt objects , 2006 .

[35]  H. F. Levison,et al.  ON THE SIZE DEPENDENCE OF THE INCLINATION DISTRIBUTION OF THE MAIN KUIPER BELT , 2001 .

[36]  Re'em Sari,et al.  Formation of Kuiper-belt binaries by dynamical friction and three-body encounters , 2002, Nature.

[37]  Richard P. Binzel,et al.  Mapping the Variegated Surface of Pluto , 1999 .

[38]  J. Margot,et al.  A Low-Density M-type Asteroid in the Main Belt , 2003, Science.

[39]  Daniel D. Durda,et al.  Asteroids Do Have Satellites , 2002 .

[40]  M. Brown,et al.  The largest Kuiper belt objects , 2008 .

[41]  D. Jewitt,et al.  Optical-Infrared Spectral Diversity in the Kuiper Belt , 1998 .

[42]  Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders , 2005, astro-ph/0504060.

[43]  M. W. Buie,et al.  Orbits and Photometry of Pluto’s Satellites: Charon, S/2005 P1, and S/2005 P2 , 2005, astro-ph/0512491.

[44]  K. Noll,et al.  Detection of Six Trans-Neptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk , 2005, astro-ph/0510130.

[45]  P. Descamps Orbit of an Astrometric Binary System , 2005 .

[46]  J. Petit,et al.  KBO binaries: how numerous were they? , 2004 .

[47]  Uwe Fink,et al.  The Separate Spectra of Pluto and its Satellite Charon , 1987 .

[48]  K. Noll Solar System binaries , 2005, Proceedings of the International Astronomical Union.

[49]  S. J. Peale,et al.  On the orbits and masses of the satellites of the Pluto–Charon system , 2006 .

[50]  D. Morrison,et al.  Pluto: evidence for methane frost. , 1976, Science.

[51]  J. Pasachoff,et al.  Charon's radius and atmospheric constraints from observations of a stellar occultation , 2006, Nature.

[52]  James L. Elliot,et al.  Pluto's Radius and Atmosphere: Results from the Entire 9 June 1988 Occultation Data Set , 1993 .

[53]  S. Weidenschilling On the Origin of Binary Transneptunian Objects , 2002 .

[54]  W. McKinnon,et al.  On the origin of the Pluto-Charon binary , 1989 .

[55]  D. Hestroffer,et al.  Orbit Determination of Binary Asteroids , 2006 .

[56]  Michael E. Brown,et al.  Direct Measurement of the Size of the Large Kuiper Belt Object (50000) Quaoar , 2004 .

[57]  S. Peale,et al.  Dynamics of the Pluto-Charon Binary , 1997 .

[58]  J. Ortiz,et al.  A study of short term rotational variability in TNOs and Centaurs from Sierra Nevada Observatory , 2003 .

[59]  Scott J. Kenyon,et al.  Accretion in the Early Kuiper Belt , 1999 .

[60]  W. Smart,et al.  Textbook on Spherical Astronomy , 1977 .

[61]  K. S. Noll,et al.  Detection of Six Transneptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk , 2005 .

[62]  Richard P. Binzel,et al.  Mutual Events and Stellar Occultations , 1997 .

[63]  H. Weaver,et al.  S/2005 P 1 and S/2005 P 2 , 2006 .

[64]  M. W. Buie,et al.  Discovery of two new satellites of Pluto , 2006, Nature.

[65]  R. Canup,et al.  A Giant Impact Origin of Pluto-Charon , 2005, Science.

[66]  G. Rieke,et al.  The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36 , 2006, astro-ph/0602316.

[67]  E. Schaller,et al.  Water Ice on the Satellite of Kuiper Belt Object 2003 EL61 , 2006, astro-ph/0601534.

[68]  Physical Properties of Trans-Neptunian Object (20000) Varuna , 2002, astro-ph/0201082.

[69]  G. M. Clemence,et al.  Methods of Celestial Mechanics , 1962 .

[70]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[71]  Daniel Hestroffer,et al.  Mass and density of Asteroid 121 Hermione from an analysis of its companion orbit , 2005 .

[72]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[73]  Marc W. Buie,et al.  Separate Lightcurves of Pluto and Charon , 1997 .

[74]  K. Muinonen,et al.  Orbit computation for transneptunian objects , 2003 .

[75]  L. Wasserman,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. I. Description of Methods and Initial Results , 2002 .

[76]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[77]  D. Morrison,et al.  Pluto: Evidence for Methane Frost , 1976 .

[78]  Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries , 2004, astro-ph/0402277.

[79]  J. R. Spencer,et al.  The orbit, mass, size, albedo, and density of (65489) Ceto/Phorcys: A tidally-evolved binary Centaur , 2007, 0704.1523.

[80]  Derek C. Richardson,et al.  The formation of asteroid satellites in large impacts: Results from numerical simulations , 2004 .

[81]  Scott J. Kenyon,et al.  Accretion in the Early Kuiper Belt II. Fragmentation , 1999 .

[82]  Giovanni B. Valsecchi,et al.  Tidal evolution and the Pluto-Charon system , 1979 .

[83]  Larry A. Lebofsky,et al.  Water frost on Charon , 1987, Nature.

[84]  H. F. Levison,et al.  Discovery of a binary Centaur , 2006 .

[85]  Robert S. Harrington,et al.  The discovery and orbit of Charon , 1980 .

[86]  Planet formation by coagulation: A focus on Uranus and Neptune , 2004, astro-ph/0405215.

[87]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[88]  Marc William Buie,et al.  The Distribution and Physical State of H2O on Charon , 2000 .

[89]  D. Richardson,et al.  Binary Minor Planets , 2006 .

[90]  S. Tegler,et al.  Accurate absolute magnitudes for Kuiper belt objects and Centaurs , 2005 .

[91]  Alain Doressoundiram,et al.  The binary Kuiper-belt object 1998 WW31 , 2002, Nature.

[92]  J. Halbwachs,et al.  Binary Stars , 2019, Planetary Habitability in Binary Systems.

[93]  S. Stern,et al.  Implications Regarding the Energetics Of the Collisional Formation of Kuiper Belt Satellites , 2002, astro-ph/0206104.

[94]  Hiroshi Terada,et al.  Subaru Infrared Spectroscopy of the Pluto–Charon System , 2000 .

[95]  George H. Jacoby,et al.  What is better than an 8192x8192 CCD Mosaic imager: two Mosaic wide-field imagers, one for KPNO and one for CTIO , 1998, Astronomical Telescopes and Instrumentation.

[96]  The Diverse Solar Phase Curves of Distant Icy Bodies. I. Photometric Observations of 18 Trans-Neptunian Objects, 7 Centaurs, and Nereid , 2006, astro-ph/0605745.

[97]  I. Tóth On the Detectability of Satellites of Small Bodies Orbiting the Sun in the Inner Region of the Edgeworth–Kuiper Belt , 1999 .

[98]  J. Elliot,et al.  The Frequency of Binary Kuiper Belt Objects , 2006 .