Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles

The aim of presenting this paper is to evaluate the effective material properties of spherical particle reinforced composites for different volume fractions up to 60%. A numerical homogenization technique based on the finite element method (FEM) with representative volume element (RVE) was used to evaluate the effective material properties with periodic boundary conditions. The numerical approach is based on the FEM and it allows the extension of the composites with arbitrary geometrical inclusion configurations, providing a powerful tool for fast calculation of their effective material properties. Modified random sequential adsorption algorithm (RSA) was used to generate the three-dimensional RVE models of randomly distributed spherical particles. The effective material properties obtained using the numerical homogenization techniques were compared with different analytical methods and good agreement was achieved. Several investigations had been conducted to estimate the influence of the size of spherical particles and of the RVE on effective material properties of spherical particle reinforced composites.

[1]  Salvatore Torquato,et al.  Morphology and effective properties of disordered heterogeneous media , 1998 .

[2]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[3]  N. Phan-Thien,et al.  New bounds on effective elastic moduli of two-component materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  A. A. Gusev Representative volume element size for elastic composites: A numerical study , 1997 .

[5]  Javier Segurado,et al.  A numerical approximation to the elastic properties of sphere-reinforced composites , 2002 .

[6]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[7]  U. Gabbert,et al.  An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites , 2005 .

[8]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[9]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[10]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[11]  J. D. Eshelby,et al.  The elastic field outside an ellipsoidal inclusion , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[13]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[14]  T. J. Wang,et al.  A unified approach to predict overall properties of composite materials , 2005 .

[15]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[16]  Toshio Mura,et al.  The Elastic Field Outside an Ellipsoidal Inclusion , 1977 .

[17]  J. Debus,et al.  Numerical homogenization techniques applied to piezoelectric composites. , 2003, The Journal of the Acoustical Society of America.

[18]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[19]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[20]  W. Drugan Micromechanics-based variational estimates for a higher-order nonlocal constitutive equation and optimal choice of effective moduli for elastic composites , 2000 .

[21]  Helmut J. Böhm,et al.  Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements , 2002 .

[22]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[23]  Andrei A. Gusev,et al.  Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite , 2000 .

[24]  Random sequential adsorption, series expansion and Monte Carlo simulation , 1997, cond-mat/9708013.

[25]  Salvatore Torquato,et al.  Effective stiffness tensor of composite media : II. Applications to isotropic dispersions , 1998 .

[26]  J. D. Eshelby Elastic inclusions and inhomogeneities , 1961 .

[27]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[28]  P. Suquet,et al.  Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .

[29]  Andrei A. Gusev,et al.  Direct numerical predictions for the elastic and thermoelastic properties of short fibre composites , 2002 .

[30]  Julián Bravo-Castillero,et al.  Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties , 2006 .

[31]  Andrei A. Gusev,et al.  Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites , 2002 .

[32]  J. A. Otero,et al.  Finite element and asymptotic homogenization methods applied to smart composite materials , 2003 .

[33]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  Graeme W. Milton,et al.  Bounds on the elastic and transport properties of two-component composites , 1982 .

[35]  Rodney Hill,et al.  Progress in solid mechanics , 1963 .