Surface passivation of perovskite film for efficient solar cells

[1]  Yang Yang,et al.  Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21. , 2018, Journal of the American Chemical Society.

[2]  He Yan,et al.  Design rules for minimizing voltage losses in high-efficiency organic solar cells , 2018, Nature Materials.

[3]  M. Green,et al.  Mixed 3D–2D Passivation Treatment for Mixed‐Cation Lead Mixed‐Halide Perovskite Solar Cells for Higher Efficiency and Better Stability , 2018 .

[4]  Luis M. Pazos-Outón,et al.  Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency , 2018 .

[5]  N. Park,et al.  Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells , 2018, Solar Energy Materials and Solar Cells.

[6]  Germà Garcia-Belmonte,et al.  Selective growth of layered perovskites for stable and efficient photovoltaics , 2018 .

[7]  Peng Chen,et al.  In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells , 2018 .

[8]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[9]  Jinsong Huang,et al.  Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. , 2018, The journal of physical chemistry letters.

[10]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[11]  Zhigang Yin,et al.  Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21% , 2017, Advanced materials.

[12]  Liduo Wang,et al.  Enhanced Moisture Stability of Cesium‐Containing Compositional Perovskites by a Feasible Interfacial Engineering , 2017 .

[13]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[14]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[15]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[16]  L. Quan,et al.  Efficient and stable solution-processed planar perovskite solar cells via contact passivation , 2017, Science.

[17]  M. Nazeeruddin,et al.  Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface , 2017 .

[18]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[19]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[20]  Ruixia Yang,et al.  Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells , 2016 .

[21]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[22]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[23]  A. Jen,et al.  Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices , 2016 .

[24]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[25]  Jinsong Huang,et al.  Thin Insulating Tunneling Contacts for Efficient and Water‐Resistant Perovskite Solar Cells , 2016, Advanced materials.

[26]  M. Saidaminov,et al.  Making and Breaking of Lead Halide Perovskites. , 2016, Accounts of chemical research.

[27]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[28]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[29]  M. Green,et al.  Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[30]  Gautam Gupta,et al.  High Efficiency Millimeter-Scale Crystalline Perovskite Solar Cells , 2015 .

[31]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[32]  H. Bolink,et al.  Trap‐Assisted Non‐Radiative Recombination in Organic–Inorganic Perovskite Solar Cells , 2015, Advanced materials.

[33]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[34]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[35]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[36]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[37]  Oleksandr Voznyy,et al.  Materials processing routes to trap-free halide perovskites. , 2014, Nano letters.

[38]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[39]  Clemens Burda,et al.  Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. , 2014, Journal of the American Chemical Society.

[40]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[41]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[42]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[43]  Konrad Wojciechowski,et al.  Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. , 2014, Nano letters.

[44]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[45]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[46]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[47]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[48]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[49]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[50]  H. Nelson,et al.  Evidence of Refrigerating Action by Means of Photon Emission in Semiconductor Diodes , 1964 .