Chapter VIII - The Lengths of Proofs

[1]  Stephen A. Cook,et al.  An Exponential Lower Bound for the Size of Monotone Real Circuits , 1999, J. Comput. Syst. Sci..

[2]  Alexander A. Razborov,et al.  Lower bounds for the polynomial calculus , 1998, computational complexity.

[3]  Discretely Ordered Modules as a First-Order Extension of The Cutting Planes Proof System , 1998, J. Symb. Log..

[4]  Jan Krajícek,et al.  Some Consequences of Cryptographical Conjectures for S12 and EF , 1998, Inf. Comput..

[5]  Jan Johannsen,et al.  Lower Bounds for Monotone Real Circuit Depth and Formula Size and Tree-Like Cutting Planes , 1998, Inf. Process. Lett..

[6]  Ran Raz,et al.  No feasible interpolation for TC/sup 0/-Frege proofs , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[7]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[8]  Samuel R. Buss,et al.  Resolution and the Weak Pigeonhole Principle , 1997, CSL.

[9]  Jan Krajícek,et al.  Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic , 1997, Journal of Symbolic Logic.

[10]  Alexander A. Razborov,et al.  Read-once branching programs, rectangular proofs of the pigeonhole principle and the transversal calculus , 1997, STOC '97.

[11]  Meera Sitharam,et al.  Non-constant Degree Lower Bounds imply linear Degree Lower Bounds , 1997, Electron. Colloquium Comput. Complex..

[12]  Toniann Pitassi,et al.  An Exponential Separation Between the Parity Principle and the Pigeonhole Principle , 1996, Ann. Pure Appl. Log..

[13]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[14]  Pavel Pudlák,et al.  On the lengths of proofs of consistency , 1996 .

[15]  Peter Clote,et al.  Cutting planes, connectivity, and threshold logic , 1996, Arch. Math. Log..

[16]  Matthias Baaz,et al.  Generalizing Theorems in Real Closed Fields , 1995, Ann. Pure Appl. Log..

[17]  Ran Raz,et al.  Lower bounds for cutting planes proofs with small coefficients , 1995, STOC '95.

[18]  Jan Krajíček On Frege and Extended Frege Proof Systems , 1995 .

[19]  M. Ajtai On the Existence of modulo p Cardinality Functions , 1995 .

[20]  S. Buss On Gödel’s Theorems on Lengths of Proofs II: Lower Bounds for Recognizing k Symbol Provability , 1995 .

[21]  Jan Krajícek,et al.  An Exponenetioal Lower Bound to the Size of Bounded Depth Frege Proofs of the Pigeonhole Principle , 1995, Random Struct. Algorithms.

[22]  Alexander Leitsch,et al.  On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.

[23]  Alexander A. Razborov,et al.  On provably disjoint NP-pairs , 1994, Electron. Colloquium Comput. Complex..

[24]  Jan Krajícek,et al.  Lower bounds on Hilbert's Nullstellensatz and propositional proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[25]  Samuel R. Buss,et al.  On Gödel's theorems on lengths of proofs I: Number of lines and speedup for arithmetics , 1994, Journal of Symbolic Logic.

[26]  Miklós Ajtai,et al.  The independence of the modulo p counting principles , 1994, STOC '94.

[27]  Jan Kra,et al.  Lower Bounds to the Size of Constant-depth Propositional Proofs , 1994 .

[28]  V. P. Orevkov Complexity of Proofs and Their Transformations in Axiomatic Theories , 1993 .

[29]  Samuel R. Buss,et al.  The deduction rule and linear and near-linear proof simulations , 1993, Journal of Symbolic Logic.

[30]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[31]  P. Clote,et al.  Arithmetic, proof theory, and computational complexity , 1993 .

[32]  J. Kraj,et al.  On Frege and Extended Frege Proof Systems , 1993 .

[33]  Toniann Pitassi,et al.  Approximation and Small-Depth Frege Proofs , 1992, SIAM J. Comput..

[34]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[35]  Russell Impagliazzo,et al.  Exponential lower bounds for the pigeonhole principle , 1992, STOC '92.

[36]  Alexander Leitsch,et al.  Complexity of Resolution Proofs and Function Introduction , 1992, Ann. Pure Appl. Log..

[37]  Elmar Eder,et al.  Relative complexities of first order calculi , 1992, Artificial intelligence = Künstliche Intelligenz.

[38]  Samuel R. Buss,et al.  The Undecidability of k-Provability , 1991, Ann. Pure Appl. Log..

[39]  Pavel Pudlák,et al.  Ramsey's Theorem in Bounded Arithmetic , 1990, CSL.

[40]  Andreas Goerdt Cuting Plane Versus Frege Proof Systems , 1990, CSL.

[41]  C. Ward Henson,et al.  A Uniform Method for Proving Lower Bounds on the Computational Complexity of Logical Theories , 1990, Ann. Pure Appl. Log..

[42]  Peter Clote ALOGTIME and a conjecture of S.A. Cook , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[43]  G. Takeuti Some Relations among Systems for Bounded Arithmetic , 1990 .

[44]  M. Ajtai Parity and the Pigeonhole Principle , 1990 .

[45]  Gaisi Takeuti,et al.  On Bounded ∑ 1 1 Polynomial Induction , 1990 .

[46]  Jan Krajícek,et al.  Quantified propositional calculi and fragments of bounded arithmetic , 1990, Math. Log. Q..

[47]  Jan Krajícek,et al.  Propositional proof systems, the consistency of first order theories and the complexity of computations , 1989, Journal of Symbolic Logic.

[48]  H. Luckhardt,et al.  Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken , 1989, Journal of Symbolic Logic.

[49]  Jan Kraj mIček On the number of steps in proofs , 1989 .

[50]  J. Girard,et al.  Proofs and types , 1989 .

[51]  Vladimir P. Orevkov Correctness of short proofs in theory with notions of feasibility , 1988, Conference on Computer Logic.

[52]  Samuel R. Buss,et al.  Resolution Proofs of Generalized Pigeonhole Principles , 1988, Theor. Comput. Sci..

[53]  Miklós Ajtai,et al.  The complexity of the Pigeonhole Principle , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[54]  William M. Farmer,et al.  A unification algorithm for second-order monadic terms , 1988, Ann. Pure Appl. Log..

[55]  Jan Krajícek,et al.  The number of proof lines and the size of proofs in first order logic , 1988, Arch. Math. Log..

[56]  Samuel R. Buss,et al.  Polynomial size proofs of the propositional pigeonhole principle , 1987, Journal of Symbolic Logic.

[57]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[58]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[59]  V. P. Orevkov Upper bound on the lengthening of proofs by cut elimination , 1986 .

[60]  P. Pudlák On the length of proofs of finitistic consistency statements in first order theories , 1986 .

[61]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[62]  Pavel Pudlák,et al.  Cuts, consistency statements and interpretations , 1985, Journal of Symbolic Logic.

[63]  A. Wilkie,et al.  Counting problems in bounded arithmetic , 1985 .

[64]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[65]  Albert G. Dragálin Correctness of inconsistent theories with notions of feasibility , 1984, Symposium on Computation Theory.

[66]  Daniele Mundici NP and Craig's Interpolation Theorem , 1984 .

[67]  R. Statman Speed-up by theories with infinite models , 1981 .

[68]  Tohru Miyatake On the length of proofs in a formal systems , 1980 .

[69]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[70]  M. Dowd,et al.  Propositional representation of arithmetic proofs , 1979 .

[71]  J. Ferrante,et al.  The computational complexity of logical theories , 1979 .

[72]  R. Statman Bounds for proof-search and speed-up in the predicate calculus , 1978 .

[73]  R. Statman Complexity of Derivations from Quantifier-Free Horn Formulae, Mechanical Introduction of Explicit Definitions, and Refinement of Completeness Theorems , 1977 .

[74]  Harvey M. Friedman,et al.  One hundred and two problems in mathematical logic , 1975, Journal of Symbolic Logic.

[75]  S. Cook,et al.  On the lengths of proofs in the propositional calculus (Preliminary Version) , 1974, STOC '74.

[76]  A. Grzegorczyk An Outline of Mathematical Logic , 1974, Springer Netherlands.

[77]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[78]  Rohit Parikh Some results on the length of proofs , 1973 .

[79]  Rohit Parikh,et al.  Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.

[80]  A. Ehrenfeucht,et al.  Abbreviating proofs by adding new axioms , 1971 .

[81]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[82]  Robert L. Vaught,et al.  Axiomatizability by a schema , 1968, Journal of Symbolic Logic.

[83]  A. N. Prior,et al.  The Theory of Implication , 1963 .

[84]  E. Beth The foundations of mathematics : a study in the philosophy of science , 1959 .

[85]  William Craig,et al.  Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory , 1957, Journal of Symbolic Logic.

[86]  William Craig,et al.  Linear reasoning. A new form of the Herbrand-Gentzen theorem , 1957, Journal of Symbolic Logic.

[87]  Twardowski,et al.  Studia Philosophica Commentarii Societatis Philosophicae Polonorum , 1948 .

[88]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[89]  L. M.-T. Grundzüge der theoretischen Logik , 1929, Nature.