The internal and external protein scaffold of the T-tubular system in cardiomyocytes

[1]  N. Severs,et al.  Spatial relationship of the C-terminal domains of dystrophin and beta-dystroglycan in cardiac muscle support a direct molecular interaction at the plasma membrane interface. , 1998, Circulation research.

[2]  J. Frank,et al.  Subcellular distribution of ankyrin in developing rabbit heart--relationship to the Na+-Ca2+ exchanger. , 1997, Journal of molecular and cellular cardiology.

[3]  L. Thornell,et al.  Null mutation in the desmin gene gives rise to a cardiomyopathy. , 1997, Journal of molecular and cellular cardiology.

[4]  T. Borg,et al.  Vinculin is an essential component for normal myofibrillar arrangement in fetal mouse cardiac myocytes. , 1997, Journal of molecular and cellular cardiology.

[5]  N. Severs,et al.  Dystrophin is not a specific component of the cardiac costamere. , 1997, Circulation research.

[6]  B. Jockusch,et al.  Crosstalk between cell adhesion molecules: vinculin as a paradigm for regulation by conformation. , 1996, Trends in cell biology.

[7]  J. Leddy,et al.  The Association of Cardiac Dystrophin with Myofibrils/Z-disc Regions in Cardiac Muscle Suggests a Novel Role in the Contractile Apparatus (*) , 1996, The Journal of Biological Chemistry.

[8]  H. Toda,et al.  Cardiac dystrophin abnormalities in Becker muscular dystrophy assessed by endomyocardial biopsy. , 1995, American heart journal.

[9]  J. Frank,et al.  Subcellular distribution of dystrophin in isolated adult and neonatal cardiac myocytes. , 1994, The American journal of physiology.

[10]  A. Friedl,et al.  Altered expression of titin and contractile proteins in failing human myocardium. , 1994, Journal of molecular and cellular cardiology.

[11]  T. Borg,et al.  Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix , 1994, Journal of cellular physiology.

[12]  E. Fabbrizio,et al.  Utrophin Localization in Normal and Dystrophin‐Deficient Heart , 1994, Circulation.

[13]  T. Borg,et al.  Distribution of beta-1 integrin in the developing rat heart. , 1994, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[14]  C. Franzini-armstrong,et al.  Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. , 1993, Developmental biology.

[15]  J. Ervasti,et al.  Dystrophin and the membrane skeleton. , 1993, Current opinion in cell biology.

[16]  J. Ervasti,et al.  Dystrophin-glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. , 1993, Circulation research.

[17]  F. Walsh,et al.  Co-localization and molecular association of dystrophin with laminin at the surface of mouse and human myotubes. , 1992, Journal of cell science.

[18]  J. Léger,et al.  Direct visualization of the dystrophin network on skeletal muscle fiber membrane , 1992, The Journal of cell biology.

[19]  H. Ishikawa,et al.  Confocal laser microscopy of dystrophin localization in guinea pig skeletal muscle fibers , 1992, The Journal of cell biology.

[20]  M. Maltarello,et al.  Localization of dystrophin COOH-terminal domain by the fracture-label technique , 1992, The Journal of cell biology.

[21]  J. Sanger,et al.  Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes , 1992, The Journal of cell biology.

[22]  G. M. Dmytrenko,et al.  Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle , 1992, The Journal of cell biology.

[23]  R. Molday,et al.  Distribution of the Na(+)-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study , 1992, The Journal of cell biology.

[24]  J. Schaper,et al.  The extracellular matrix in human cardiac tissue. Part II: Vimentin, laminin, and fibronectin. , 1992, Cardioscience.

[25]  O. Ibraghimov-Beskrovnaya,et al.  Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix , 1992, Nature.

[26]  J. Schaper,et al.  The extracellular matrix in human myocardium: Part I: Collagens I, III, IV, and VI. , 1991, Cardioscience.

[27]  J. Ervasti,et al.  Membrane organization of the dystrophin-glycoprotein complex , 1991, Cell.

[28]  L. Lemanski,et al.  Studies of hamster cardiac myofibrillogenesis in vivo with antibodies to spectrin, desmin, and alpha-actinin. , 1991, The American journal of anatomy.

[29]  M. Uchino,et al.  Dystrophin: Localization and presumed function , 1991, Muscle & nerve.

[30]  A. Friedl,et al.  Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. , 1991, Circulation.

[31]  A. O. Jorgensen,et al.  Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ , 1991, The Journal of cell biology.

[32]  T. Borg,et al.  Distribution of vinculin in the Z‐disk of striated muscle: Analysis by laser scanning confocal microscopy , 1990, Journal of cellular physiology.

[33]  S. Dimauro,et al.  Duchenne muscular dystrophy: Deficiency of dystrophin at the muscle cell surface , 1988, Cell.

[34]  Hideo Sugita,et al.  Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide , 1988, Nature.

[35]  A. Monaco,et al.  The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein , 1988, Cell.

[36]  V. Koteliansky,et al.  Localization of talin in skeletal and cardiac muscles , 1986, FEBS letters.

[37]  R. Bloch,et al.  Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures , 1985, The Journal of cell biology.

[38]  J. Siliciano,et al.  Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers , 1983, The Journal of cell biology.

[39]  B. Geiger,et al.  Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D. Terrar,et al.  Electrical properties of individual cells isolated from adult rat ventricular myocardium. , 1980, The Journal of physiology.

[41]  E. Page,et al.  Improved stereological techniques for studying myocardial cell growth: application to external sarcolemma, T system, and intercalated disks of rabbit and rat hearts. , 1978, Journal of ultrastructure research.

[42]  Y. Takagishi,et al.  Spatial distribution of dihydropyridine receptors in the plasma membrane of guinea pig cardiac myocytes investigated by correlative confocal microscopy and label-fracture electron microscopy. , 1997, Journal of electron microscopy.

[43]  K. Burridge,et al.  Focal adhesions, contractility, and signaling. , 1996, Annual review of cell and developmental biology.

[44]  K. Ohlendieck,et al.  Towards an understanding of the dystrophin-glycoprotein complex: linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers. , 1996, European journal of cell biology.

[45]  J. Sommer,et al.  Comparative anatomy: in praise of a powerful approach to elucidate mechanisms translating cardiac excitation into purposeful contraction. , 1995, Journal of molecular and cellular cardiology.

[46]  R. Hodges,et al.  Dystrophin is tightly associated with the sarcolemma of mammalian skeletal muscle fibers. , 1991, Experimental cell research.

[47]  S. Craig,et al.  Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. , 1983, Cell motility.

[48]  E. Lazarides,et al.  Expression of the beta subunit of spectrin in nonerythroid cells. , 1983, Proceedings of the National Academy of Sciences of the United States of America.