Dynamical aspects of quantum entanglement for weakly coupled kicked tops.

We investigate how the dynamical production of quantum entanglement for weakly coupled, composite quantum systems is influenced by the chaotic dynamics of the corresponding classical system, using coupled kicked tops. The linear entropy for the subsystem (a kicked top) is employed as a measure of entanglement. A perturbative formula for the entanglement production rate is derived. The formula contains a correlation function that can be evaluated only from the information of uncoupled tops. Using this expression and the assumption that the correlation function decays exponentially which is plausible for chaotic tops, it is shown that the increment in the strength of chaos does not enhance the production rate of entanglement when the coupling is weak enough and the subsystems (kicked tops) are strongly chaotic. The result is confirmed by numerical experiments. The perturbative approach is also applied to a weakly chaotic region, where tori and chaotic sea coexist in the corresponding classical phase space, to reexamine a recent numerical study that suggests an intimate relationship between the linear stability of the corresponding classical trajectory and the entanglement production rate.