Log-concavity and strong q-log-convexity for Riordan arrays and recursive matrices

Let [An,k ] n,k ⩾0 be an infinite lower triangular array satisfying the recurrence for n ⩾ 1 and k ⩾ 0, where A 0,0 = 1, A 0,k = A k,–1 = 0 for k > 0. We present some criteria for the log-concavity of rows and strong q-log-convexity of generating functions of rows. Our results can be applied to many well-known triangular arrays, such as the Pascal triangle, the Stirling triangle of the second kind, the Bell triangle, the large Schröder triangle, the Motzkin triangle, and the Catalan triangles of Aigner and Shapiro, in a unified approach. In addition, we prove that the binomial transformation not only preserves the strong q-log-convexity property, but also preserves the strong q-log-concavity property. Finally, we demonstrate that the strong q-log-convexity property is preserved by the Stirling transformation and Whitney transformation of the second kind, which extends some known results for the strong q-log-convexity property.

[1]  Renzo Sprugnoli,et al.  Combinatorial sums through Riordan arrays , 2011 .

[2]  Moussa Benoumhani,et al.  Log-Concavity of Whitney Numbers of Dowling Lattices , 1999 .

[3]  L. W. Shapiro,et al.  A Catalan triangle , 1976, Discret. Math..

[4]  H. Belbachir,et al.  Unimodal Rays in the Ordinary and Generalized Pascal Triangles , 2008 .

[5]  Arthur L. B. Yang,et al.  Recurrence Relations for Strongly q-Log-Convex Polynomials , 2008, Canadian Mathematical Bulletin.

[6]  Renzo Sprugnoli,et al.  On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.

[7]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[8]  E. Lieb Concavity properties and a generating function for stirling numbers , 1968 .

[9]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[10]  Christian Krattenthaler,et al.  On theq-log-concavity of Gaussian binomial coefficients , 1989 .

[11]  Moussa Benoumhani,et al.  On some numbers related to Whitney numbers of Dowling lattices , 1997 .

[12]  Pierre Leroux,et al.  Reduced matrices and q-log-concavity properties of q-Stirling numbers , 1990, J. Comb. Theory A.

[13]  Bao-Xuan Zhu,et al.  Some positivities in certain triangular arrays , 2014 .

[14]  Bruce E. Sagan LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .

[15]  Assia Fettouma Tebtoub,et al.  The $t$-successive associated Stirling numbers, $t$-Fibonacci--Stirling numbers, and unimodality , 2017 .

[16]  Renzo Sprugnoli,et al.  Sequence characterization of Riordan arrays , 2009, Discret. Math..

[17]  Martin Aigner,et al.  A Characterization of the bell numbers , 1999, Discret. Math..

[18]  Xi Chen,et al.  Total positivity of recursive matrices , 2015, 1601.05645.

[19]  Stephen M. Tanny,et al.  On Some Numbers Related to the Bell Numbers , 1975, Canadian Mathematical Bulletin.

[20]  Martin Aigner,et al.  Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.

[21]  Thomas A. Dowling,et al.  A class of geometric lattices based on finite groups , 1973 .

[22]  Hana Kim,et al.  Combinatorics of Riordan arrays with identical A and Z sequences , 2012, Discret. Math..

[23]  Martin Aigner,et al.  Enumeration via ballot numbers , 2008, Discret. Math..

[24]  M. Aigner Catalan and other numbers: a recurrent theme , 2001 .

[25]  Tian-Xiao He,et al.  Parametric Catalan Numbers and Catalan Triangles , 2013 .

[26]  Yeong-Nan Yeh,et al.  Log-concavity and LC-positivity , 2007, J. Comb. Theory, Ser. A.

[27]  Hacène Belbachir,et al.  Preserving Log-Convexity for Generalized Pascal Triangles , 2012, Electron. J. Comb..

[28]  László Szalay,et al.  Unimodal Rays in the Regular and Generalized Pascal Pyramids , 2011, Electron. J. Comb..

[29]  George Polya,et al.  On The Product of Two Power Series , 1949, Canadian Journal of Mathematics.

[30]  Lynne M. Butler,et al.  The q-log-concavity of q-binomial coefficients , 1990, J. Comb. Theory, Ser. A.

[31]  Robert Donaghey,et al.  Motzkin Numbers , 1977, J. Comb. Theory, Ser. A.

[32]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[33]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[34]  L. Harper Stirling Behavior is Asymptotically Normal , 1967 .

[35]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[36]  Moussa Benoumhani,et al.  On Whitney numbers of Dowling lattices , 1996, Discret. Math..

[37]  William Y. C. Chen,et al.  The q-log-convexity of the Narayana polynomials of type B , 2010, Adv. Appl. Math..

[38]  Arthur L. B. Yang,et al.  Schur positivity and the q-log-convexity of the Narayana polynomials , 2008, 0806.1561.

[39]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..