O( N) vector field theories in the double scaling limit

[1]  P. Vecchia,et al.  Double scaling limit in O(N) vector models , 1991 .

[2]  P. Ginsparg,et al.  Action Principle and Large Order Behavior of Non-Perturbative Gravity , 1991 .

[3]  P. Ginsparg,et al.  (p, q) string actions , 1990 .

[4]  A. Jevicki,et al.  ACTION PRINCIPLE FOR STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[5]  David J. Gross,et al.  A Nonperturbative Treatment of Two-dimensional Quantum Gravity , 1990 .

[6]  É. Brézin,et al.  Scaling violation in a field theory of closed strings in one physical dimension , 1990 .

[7]  S. Shenker,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[8]  P. Ginsparg,et al.  2D gravity+1D matter , 1990 .

[9]  D. Gross,et al.  A Nonperturbative Solution of $D=1$ String Theory , 1990 .

[10]  M. Douglas,et al.  Strings in less than one dimension and the generalized KdV hierarchies , 1990 .

[11]  G. Parisi On the one dimensional discretized string , 1990 .

[12]  G. Parisi String theory on the one dimensional lattice , 1990 .

[13]  G. Parisi,et al.  On the Spectrum of the One-Dimensional String , 1990 .

[14]  É. Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[15]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[16]  V. Kazakov Bilocal Regularization of Models of Random Surfaces , 1985 .

[17]  Jürg Fröhlich,et al.  Diseases of triangulated random surface models, and possible cures , 1985 .

[18]  F. David,et al.  A model of random surfaces with non-trivial critical behaviour , 1985 .

[19]  F. David PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS , 1985 .