Shapes of Delaunay Simplexes and Structural Analysis of Hard Sphere Packings

In this chapter we apply a computational geometry technique to investigate the structure of packings of hard spheres. The hard sphere model is the base for understanding the structure of many physical matters: liquids, solids, colloids and granular materials. The structure analysis is based on the concept of the Voronoi Diagram (Voronoi-Delaunay tessellation), which is well known in mathematics and physics. The Delaunay simplexes are used as the main instrument for this work. They define the simplest structural elements in the three-dimensional space. A challenging problem is to relate geometrical characteristics of the simplexes (e.g. their shape) with structural properties of the packing. In this chapter we review our recent results related to this problem. The presented outcome may be of interest to both mathematicians and physicists. The idea of structural analysis of atomic systems, which was first proposed in computational physics, is a subject for further mathematical development. On the other hand, physicists, chemists and material scientists, who are still using traditional methods for structure characterization, have an opportunity to learn more about this new technique and its implementation. We present the analysis of hard sphere packings with different densities. Our method permits to tackle a renowned physical problem: to reveal a geometrical principle of disordered packings. The proposed analysis of Delaunay simplexes can also be applied to structural investigation of other molecular systems.

[1]  Thomas M. Liebling,et al.  The Laguerre model of grain growth in two dimensions I. Cellular structures viewed as dynamical Laguerre tessellations , 1996 .

[2]  F. Frank Supercooling of liquids , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  N. N. Medvedev,et al.  Investigation of free volume percolation under the liquid-glass phase transition , 1995 .

[4]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[5]  The structure of liquids , 1960 .

[6]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[7]  V. Simonet,et al.  Icosahedral short-range order in deeply undercooled metallic melts. , 2002, Physical review letters.

[8]  T Aste,et al.  Geometrical structure of disordered sphere packings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[10]  Marina L. Gavrilova A reliable algorithm for computing the generalized voronoi diagram for a set of spheres in the euclidean d-dimensional space , 2002, CCCG.

[11]  J. D. Bernal,et al.  Geometry of the Structure of Monatomic Liquids , 1960, Nature.

[12]  T. Hales The Kepler conjecture , 1998, math/9811078.

[13]  L. Oger,et al.  Geometrical characterization of hard-sphere systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  N. N. Medvedev Aggregation of tetrahedral and quartoctahedral Delaunay simplices in liquid and amorphous rubidium , 1990 .

[15]  Mihaly Mezei,et al.  Morphology of Voids in Molecular Systems. A Voronoi−Delaunay Analysis of a Simulated DMPC Membrane , 2004 .

[16]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[17]  N. N. Medvedev,et al.  Polytetrahedral nature of the dense disordered packings of hard spheres. , 2007, Physical review letters.

[18]  N. N. Medvedev,et al.  Homogeneous crystallization of the Lennard-Jones liquid. Structural analysis based on Delaunay simplices method , 2006 .

[19]  T. Lippmann,et al.  Observation of ® ve-fold local symmetry in liquid lead , 2022 .

[20]  Combustion Sb Ras A Novel Delaunay Simplex Technique for Detection of Crystalline Nuclei in Dense Packings of Spheres , 2005 .

[21]  Tomaso Aste,et al.  Variations around disordered close packing , 2005 .

[22]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[23]  Deok-Soo Kim,et al.  Euclidean Voronoi diagram of 3D balls and its computation via tracing edges , 2005, Comput. Aided Des..

[24]  D. Kilgour,et al.  The density of random close packing of spheres , 1969 .

[25]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[26]  Jon G. Rokne,et al.  An efficient algorithm for construction of the power diagram from the voronoi diagram in the plane , 1996, Int. J. Comput. Math..

[27]  Bryant,et al.  Prediction of relative permeability in simple porous media. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[28]  Alfons van Blaaderen,et al.  Real-Space Structure of Colloidal Hard-Sphere Glasses , 1995, Science.

[29]  John S. Rowlinson,et al.  Physics of simple liquids , 1968 .

[30]  D. Chandler,et al.  Liquid State Physics: A Statistical Mechanical Introduction , 1974 .

[31]  C. Small The statistical theory of shape , 1996 .

[32]  Tomaso Aste,et al.  The pursuit of perfect packing , 2000 .

[33]  T. Aste,et al.  Structural and entropic insights into the nature of the random-close-packing limit. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[35]  J. Finney,et al.  Interstice correlation functions; a new, sensitive characterisation of non-crystalline packed structures , 1981 .

[36]  David Taniar,et al.  Computational Science and Its Applications - ICCSA 2005, International Conference, Singapore, May 9-12, 2005, Proceedings, Part I , 2005, ICCSA.

[37]  Brendan O'Malley,et al.  Crystal nucleation in the hard sphere system. , 2003, Physical review letters.

[38]  François Guibault,et al.  An analysis of simplex shape measures for anisotropic meshes , 2005 .

[39]  J. D. Bernal,et al.  A Geometrical Approach to the Structure Of Liquids , 1959, Nature.

[40]  D Frenkel,et al.  Numerical prediction of absolute crystallization rates in hard-sphere colloids. , 2004, The Journal of chemical physics.

[41]  Marina L. Gavrilova,et al.  An algorithm for three‐dimensional Voronoi S‐network , 2006, J. Comput. Chem..

[42]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[43]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  J. D. Bernal,et al.  The Bakerian Lecture, 1962 The structure of liquids , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  P. Debenedetti,et al.  Computational investigation of order, structure, and dynamics in modified water models. , 2005, The journal of physical chemistry. B.

[46]  N. N. Medvedev,et al.  Shape of the Delaunay simplices in dense random packings of hard and soft spheres , 1987 .

[47]  A. Oleinikova,et al.  Percolating networks and liquid–liquid transitions in supercooled water , 2006 .

[48]  Jodrey,et al.  Computer simulation of close random packing of equal spheres. , 1985, Physical review. A, General physics.

[49]  Marina L. Gavrilova,et al.  Application of Procrustes Distance to Shape Analysis of Delaunay Simplexes , 2006, 2006 3rd International Symposium on Voronoi Diagrams in Science and Engineering.

[50]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  S. Torquato,et al.  Hard-sphere statistics along the metastable amorphous branch , 1998 .

[52]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[53]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[54]  Clarke,et al.  Structural changes accompanying densification of random hard-sphere packings. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  Iosif I Vaisman,et al.  A new topological method to measure protein structure similarity. , 2003, Biochemical and biophysical research communications.

[56]  William G. Hoover,et al.  Melting Transition and Communal Entropy for Hard Spheres , 1968 .

[57]  Fumiko Yonezawa,et al.  Nature of amorphous and liquid structures — computer simulations and statistical geometry , 1984 .

[58]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[59]  M. Gavrilova,et al.  The coloring of the voronoi network: investigation of structural heterogeneity in the packings of spheres , 2005 .

[60]  David G. Kendall,et al.  Shape & Shape Theory , 1999 .

[61]  Anishchik,et al.  Three-Dimensional Apollonian Packing as a Model for Dense Granular Systems. , 1995, Physical review letters.

[62]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[63]  Monica L. Skoge,et al.  Packing hyperspheres in high-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Nikolai N. Medvedev,et al.  Geometrical analysis of the structure of simple liquids : percolation approach , 1991 .

[65]  Nikolai N. Medvedev,et al.  Can Various Classes of Atomic Configurations (Delaunay Simplices) be Distinguished in Random Dense Packings of Spherical Particles , 1989 .

[66]  Nikolai N. Medvedev,et al.  Structure of simple liquids as a percolation problem on the Voronoi network , 1988 .

[67]  U. Gasser,et al.  Local order in a supercooled colloidal fluid observed by confocal microscopy , 2002 .

[68]  C. Croxton Liquid State Physics–A Statistical Mechanical Introduction: Contents , 1974 .

[69]  Nikolai N. Medvedev,et al.  Critical densities in hard sphere packings. Delaunay simplex analysis. , 2006, 2006 3rd International Symposium on Voronoi Diagrams in Science and Engineering.

[70]  J. L. Finney,et al.  Characterisation of models of multicomponent amorphous metals: The radical alternative to the Voronoi polyhedron , 1982 .

[71]  Dietrich Stoyan,et al.  Statistical verification of crystallization in hard sphere packings under densification , 2006 .