Diagnosing 0.1–10 au Scale Morphology of the FU Ori Disk Using ALMA and VLTI/GRAVITY

We report new Atacama Large Millimeter/submillimeter Array Band 3 (86-100 GHz; $\sim$80 mas angular resolution) and Band 4 (146-160 GHz; $\sim$50 mas angular resolution) observations of the dust continuum emission towards the archetypal and ongoing accretion burst young stellar object FU Ori, which simultaneously covered its companion, FU Ori S. In addition, we present near-infrared (2-2.45 $\mu$m) observations of FU Ori taken with the General Relativity Analysis via VLT InTerferometrY (GRAVITY; $\sim$1 mas angular resolution) instrument on the Very Large Telescope Interferometer (VLTI). We find that the emission in both FU Ori and FU Ori S at (sub)millimeter and near infrared bands is dominated by structures inward of $\sim$10 au radii. We detected closure phases close to zero from FU Ori with VLTI/GRAVITY, which indicate the source is approximately centrally symmetric and therefore is likely viewed nearly face-on. Our simple model to fit the GRAVITY data shows that the inner 0.4 au radii of the FU Ori disk has a triangular spectral shape at 2-2.45 $\mu$m, which is consistent with the H$_{2}$O and CO absorption features in a $\dot{M}\sim$10$^{-4}$ $M_{\odot}\,yr^{-1}$, viscously heated accretion disk. At larger ($\sim$0.4-10 au) radii, our analysis shows that viscous heating may also explain the observed (sub)millimeter and centimeter spectral energy distribution when we assume a constant, $\sim$10$^{-4}$ $M_{\odot}\,yr^{-1}$ mass inflow rate in this region. This explains how the inner 0.4 au disk is replenished with mass at a modest rate, such that it neither depletes nor accumulates significant masses over its short dynamic timescale. Finally, we tentatively detect evidence of vertical dust settling in the inner 10 au of the FU Ori disk, but confirmation requires more complete spectral sampling in the centimeter bands.

[1]  S. Quanz,et al.  FU Orionis: The MIDI VLTI Perspective , 2006, astro-ph/0605382.

[2]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[3]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[4]  U. Michigan,et al.  The Hot Inner Disk of FU Orionis , 2007, 0707.3429.

[5]  H. Liu The Anomalously Low (Sub)Millimeter Spectral Indices of Some Protoplanetary Disks May Be Explained By Dust Self-scattering , 2019, The Astrophysical Journal.

[6]  T. V. van Kempen,et al.  CO in Protostars (COPS): Herschel-SPIRE Spectroscopy of Embedded Protostars , 2017, The Astrophysical Journal.

[7]  Zhaohuan Zhu,et al.  ACCRETION OUTBURSTS IN SELF-GRAVITATING PROTOPLANETARY DISKS , 2014, 1409.3891.

[8]  G. Herczeg,et al.  THE CDF ARCHIVE: HERSCHEL PACS AND SPIRE SPECTROSCOPIC DATA PIPELINE AND PRODUCTS FOR PROTOSTARS AND YOUNG STELLAR OBJECTS , 2016, 1601.05028.

[9]  S. Ridgway,et al.  The composite spectra of FU Orionis stars , 1978 .

[10]  Benjamin F. Lane,et al.  New insights on the AU-scale circumstellar structure of FU Orionis , 2005 .

[11]  S. Okuzumi,et al.  Nonsticky Ice at the Origin of the Uniformly Polarized Submillimeter Emission from the HL Tau Disk , 2019, The Astrophysical Journal.

[12]  Zhaohuan Zhu,et al.  One Solution to the Mass Budget Problem for Planet Formation: Optically Thick Disks with Dust Scattering , 2019, The Astrophysical Journal.

[13]  B. Swinyard,et al.  Beam profile for the Herschel-SPIRE Fourier transform spectrometer. , 2013, Applied optics.

[14]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[15]  H. Liu,et al.  A concordant scenario to explain FU Orionis from deep centimeter and millimeter interferometric observations , 2017, 1701.06531.

[16]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[17]  H. Liu,et al.  Near-infrared High-resolution Imaging Polarimetry of FU Ori-type Objects: Toward a Unified Scheme for Low-mass Protostellar Evolution , 2018, The Astrophysical Journal.

[18]  George H. Herbig,et al.  EX Lupi: History and Spectroscopy , 2007 .

[19]  The Early ALMA View of the FU Ori Outburst System , 2015, 1509.02543.

[20]  Austria,et al.  Early evolution of viscous and self-gravitating circumstellar disks with a dust component , 2018, Astronomy & Astrophysics.

[21]  FU Orionis: A Binary Star? , 2003, astro-ph/0311606.

[22]  C. Dominik,et al.  The inner rim structures of protoplanetary discs , 2009, 0908.1692.

[23]  C. Vastel,et al.  Change in the chemical composition of infalling gas forming a disk around a protostar , 2014, Nature.

[24]  E. Keto The Formation of Massive Stars by Accretion through Trapped Hypercompact H II Regions , 2003, astro-ph/0309131.

[25]  T. V. van Kempen,et al.  AN ANALYSIS OF THE ENVIRONMENTS OF FU ORIONIS OBJECTS WITH HERSCHEL , 2013, 1306.0666.

[26]  Zhaohuan Zhu,et al.  TWO-DIMENSIONAL SIMULATIONS OF FU ORIONIS DISK OUTBURSTS , 2009, 0906.1595.

[27]  A. Amorim,et al.  GRAVITY data reduction software , 2014, Astronomical Telescopes and Instrumentation.

[29]  S. Longmore,et al.  A 1.3 mm SMA Survey of 29 Variable Young Stellar Objects , 2017, 1710.08686.

[30]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[31]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[32]  M. Dunham,et al.  RESOLVING THE LUMINOSITY PROBLEM IN LOW-MASS STAR FORMATION , 2011, 1112.4789.

[33]  Marc Ferlet,et al.  Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer , 2013, 1306.5780.

[34]  On the Near-Infrared Spectrum of FU Orionis , 1991 .

[35]  Zhaohuan Zhu,et al.  LONG-TERM EVOLUTION OF PROTOSTELLAR AND PROTOPLANETARY DISKS. II. LAYERED ACCRETION WITH INFALL , 2010, 1003.1756.

[36]  P. Mezger,et al.  Galactic H II Regions. I. Observations of Their Continuum Radiation at the Frequency 5 GHz , 1967 .

[37]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[38]  J. E. Pringle,et al.  Accretion Discs in Astrophysics , 1981 .

[39]  Zhaohuan Zhu,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA Maps of Protoplanetary Disks in Terms of a Dust Model , 2018, The Astrophysical Journal.

[40]  S. Lizano,et al.  Emission from Magnetized Accretion Disks around Young Stars , 2017, 1711.04803.

[41]  H. Liu,et al.  Circumstellar disks of the most vigorously accreting young stars , 2016, Science Advances.

[42]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[43]  H. Liu,et al.  SIGNATURES OF GRAVITATIONAL INSTABILITY IN RESOLVED IMAGES OF PROTOSTELLAR DISKS , 2016, 1603.01618.

[44]  F. Malbet,et al.  Imaging the heart of astrophysical objects with optical long-baseline interferometry , 2012, 1204.4363.

[45]  Long-wavelength excesses of FU Orionis objects: flared outer disks or infalling envelopes? , 2008, 0806.3715.

[46]  P. Ho,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[47]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[48]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[49]  C. Aspin,et al.  The FU Orionis Binary System and the Formation of Close Binaries , 2004 .

[50]  Benjamin A. Sargent,et al.  THE MID-INFRARED EVOLUTION OF THE FU ORIONIS DISK , 2016, 1609.01765.

[51]  L. Hartmann,et al.  The FU Orionis Phenomenon , 1996 .