On the Convergence Behavior of IDR(s) and Related Methods
暂无分享,去创建一个
[1] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.
[2] Peter Sonneveld,et al. On the statistical properties of solutions of completely random linear systems , 2010 .
[3] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .
[4] Homer F. Walker,et al. Residual smoothing and peak/plateau behavior in Krylov subspace methods , 1995 .
[5] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[6] Qiang Ye,et al. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..
[7] Tijmen P. Collignon,et al. Minimizing synchronization in IDR (s) , 2011, Numer. Linear Algebra Appl..
[8] Gerard L. G. Sleijpen,et al. BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.
[9] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[10] Tony F. Chan,et al. ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..
[11] Gerard L. G. Sleijpen,et al. Bi-CGSTAB as an induced dimension reduction method , 2010 .
[12] H. V. der. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000 .
[13] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[14] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[15] Gerard L. G. Sleijpen,et al. Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems , 2011 .
[16] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[17] J. Cullum,et al. A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices , 1974, CDC 1974.
[18] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[19] Henk A. van der Vorst,et al. Transpose-free formulations of Lanczos-type methods for nonsymmetric linear systems , 2004, Numerical Algorithms.
[20] Anne Greenbaum,et al. Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..
[21] Marlis Hochbruck,et al. Error Analysis of Krylov Methods In a Nutshell , 1998, SIAM J. Sci. Comput..
[22] Gene H. Golub,et al. The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.
[23] Martin H. Gutknecht,et al. Eigenvalue Computations Based on IDR , 2013, SIAM J. Matrix Anal. Appl..
[24] Masaaki Sugihara,et al. GBi-CGSTAB(s, L): IDR(s) with higher-order stabilization polynomials , 2010, J. Comput. Appl. Math..
[25] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[26] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[27] Valeria Simoncini,et al. Interpreting IDR as a Petrov--Galerkin Method , 2010, SIAM J. Sci. Comput..
[28] Malay Ghosh,et al. A Simple Derivation of the Wishart Distribution , 2002 .
[29] Gerard L. G. Sleijpen,et al. Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction , 2010, SIAM J. Sci. Comput..
[30] Martin H. Gutknecht,et al. Look-Ahead Procedures for Lanczos-Type Product Methods Based on Three-Term Lanczos Recurrences , 2000, SIAM J. Matrix Anal. Appl..
[31] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[32] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[33] Gerard L. G. Sleijpen,et al. Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.
[34] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[35] Martin B. van Gijzen,et al. Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.